Measurements of a quantum bulk acoustic resonator using a superconducting qubit

被引:8
|
作者
Chou, M. -H. [1 ,2 ]
Dumur, E. [1 ,3 ]
Zhong, Y. P. [1 ]
Peairs, G. A. [1 ,4 ]
Bienfait, A. [1 ,5 ]
Chang, H. -S. [1 ]
Conner, C. R. [1 ]
Grebel, J. [1 ]
Povey, R. G. [1 ,2 ]
Satzinger, K. J. [1 ,4 ,6 ]
Cleland, A. N. [1 ,3 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Argonne Natl Lab, Argonne, IL 60439 USA
[4] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[5] Univ Claude Bernard, Univ Lyon, ENS Lyon, CNRS,Lab Phys, F-69342 Lyon, France
[6] Google, Santa Barbara, CA 93117 USA
基金
美国国家科学基金会;
关键词
PHONONS; STATE;
D O I
10.1063/5.0023827
中图分类号
O59 [应用物理学];
学科分类号
摘要
Phonon modes at microwave frequencies can be cooled to their quantum ground state using conventional cryogenic refrigeration, providing a convenient way to study and manipulate quantum states at the single phonon level. Phonons are of particular interest because mechanical deformations can mediate interactions with a wide range of different quantum systems, including solid-state defects, superconducting qubits, and optical photons when using optomechanically active constructs. Phonons, thus, hold promise for quantum-focused applications as diverse as sensing, information processing, and communication. Here, we describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88GHz resonant frequency, which, at cryogenic temperatures, displays large electromechanical coupling strength combined with a high intrinsic mechanical quality factor, Q i approximate to 4.3 x 10 4. Using a recently developed flip-chip technique, we couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate the quantum control of the mechanics in the coupled system. This approach promises a facile and flexible experimental approach to quantum acoustics and hybrid quantum systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Superconducting transmon qubit-resonator quantum battery
    Dou, Fu-Quan
    Yang, Fang-Mei
    PHYSICAL REVIEW A, 2023, 107 (02)
  • [2] Quantum Heating of a Nonlinear Resonator Probed by a Superconducting Qubit
    Ong, F. R.
    Boissonneault, M.
    Mallet, F.
    Doherty, A. C.
    Blais, A.
    Vion, D.
    Esteve, D.
    Bertet, P.
    PHYSICAL REVIEW LETTERS, 2013, 110 (04)
  • [3] Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator
    朱行宇
    涂涛
    郭奥林
    周宗权
    郭光灿
    Chinese Physics Letters, 2020, (02) : 11 - 15
  • [4] Fast unconditional initialization for superconducting qubit and resonator using quantum-circuit refrigerator
    Yoshioka, T.
    Tsai, J. S.
    APPLIED PHYSICS LETTERS, 2021, 119 (12)
  • [5] Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation
    Blencowe, M. P.
    Armour, A. D.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [6] Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator
    朱行宇
    涂涛
    郭奥林
    周宗权
    郭光灿
    Chinese Physics Letters, 2020, 37 (02) : 11 - 15
  • [7] Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator
    Zhu, Xing-Yu
    Tu, Tao
    Guo, Ao-Lin
    Zhou, Zong-Quan
    Guo, Guang-Can
    CHINESE PHYSICS LETTERS, 2020, 37 (02)
  • [8] Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: I. Echo scheme
    Armour, A. D.
    Blencowe, M. P.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [9] Bulk Acoustic Wave Resonator Thermal Noise Measurements
    Goryachev, M.
    Ivanov, E. N.
    Parker, S. R.
    Winterflood, J.
    Tobar, M. E.
    Galliou, S.
    2014 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM (FCS), 2014, : 50 - 52
  • [10] Resonator-based superconducting qubit
    Zhilyaev I.N.
    Russian Microelectronics, 2005, 34 (6) : 407 - 409