Industrial Control System Anomaly Detection Using Convolutional Neural Network Consensus

被引:1
|
作者
Sinha, Aviraj [1 ]
Taylor, Michael [1 ]
Srirama, Nathan [1 ]
Manikas, Theodore [1 ]
Larson, Eric C. [1 ]
Thornton, Mitchell A. [1 ]
机构
[1] Southern Methodist Univ, Darwin Deason Inst Cyber Secur, Dallas, TX 75205 USA
关键词
Industrial systems; anomaly detection; machine learning; multi-view classification;
D O I
10.1109/CCTA48906.2021.9659110
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Industrial control systems provide transportation, essential utilities, and the manufacturing of goods to the masses. It is critical that controlled processes are executed correctly and according to schedule. Monitoring the system's performance during its operation is an important approach for maintaining high levels of reliability and availability. We present a system monitoring capability that implements parallel multi-view neural networks to detect anomalous behavior in an industrial control system by predicting operational states. By deploying the prediction capability within the system, system operation can be monitored in a semi-supervised manner to ensure the actual system state lies within an appropriate region of the state space that was previously predicted by the neural networks. Furthermore, if the two predictive models diverge in their classification of state (breaking consensus), it is likely that system operation has been compromised due to faulty equipment, communication errors, or some other source of malfunction. To achieve different "views" of the system, one predictive model is trained to analyze the data flow of system control packets and the other model is trained to analyze gyrometric signals obtained from physical sensors in the control system. We demonstrate that this methodology can detect anomalous behavior of an example industrial control system by emulating its operation in the presence of injected anomalies. Results indicate highly accurate anomaly detection during system operation.
引用
收藏
页码:693 / 700
页数:8
相关论文
共 50 条
  • [41] Network anomaly detection using neural networks
    Globa, L. S.
    Demidova, Y. A.
    Ternovoy, M. Y.
    2006 16TH INTERNATIONAL CRIMEAN CONFERENCE MICROWAVE & TELECOMMUNICATION TECHNOLOGY, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 412 - +
  • [42] Multiclass anomaly detection in imbalanced structural health monitoring data using convolutional neural network
    Zhao M.
    Sadhu A.
    Capretz M.
    Journal of Infrastructure Preservation and Resilience, 2022, 3 (01):
  • [43] Ellipse Detection with Applications of Convolutional Neural Network in Industrial Images
    Liu, Kang
    Lu, Yonggang
    Bai, Rubing
    Xu, Kun
    Peng, Tao
    Tai, Yichun
    Zhang, Zhijiang
    ELECTRONICS, 2023, 12 (16)
  • [44] Function-Aware Anomaly Detection Based on Wavelet Neural Network for Industrial Control Communication
    Wan, Ming
    Song, Yan
    Jing, Yuan
    Wang, Junlu
    SECURITY AND COMMUNICATION NETWORKS, 2018,
  • [45] Schizophrenia Detection Using Convolutional Neural Network
    Skunda, Juraj
    Polec, Jaroslav
    Nerusil, Boris
    Malisova, Eva
    PROCEEDINGS OF 63RD INTERNATIONAL SYMPOSIUM ELMAR-2021, 2021, : 151 - 154
  • [46] A Trail Detection Using Convolutional Neural Network
    Kim, Jeonghyeok
    Lee, Heezin
    Kang, Sanggil
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON EMERGING DATABASES: TECHNOLOGIES, APPLICATIONS, AND THEORY, 2018, 461 : 275 - 279
  • [47] Detection of Plastics Using Convolutional Neural Network
    Latha, R. S.
    Sreekanth, G. R.
    Amarnath, A. C.
    Abishek, K. K.
    Deepakraj, K.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (04): : 224 - 227
  • [48] Edge Detection Using Convolutional Neural Network
    Wang, Ruohui
    ADVANCES IN NEURAL NETWORKS - ISNN 2016, 2016, 9719 : 12 - 20
  • [49] Melanoma Detection Using Convolutional Neural Network
    Zhang, Runyuan
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 75 - 78
  • [50] Detection of Assaults in Network Intrusion System using Rough Set and Convolutional Neural Network
    Ahmed, N. Syed Siraj
    Khan, A. B. Feroz
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 139 (01) : 107 - 144