Melanoma Detection Using Convolutional Neural Network

被引:15
|
作者
Zhang, Runyuan [1 ]
机构
[1] Emory Univ, Atlanta, GA 30322 USA
关键词
skin cancer; melanoma; convolutional neural network; classification; CLASSIFICATION;
D O I
10.1109/ICCECE51280.2021.9342142
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Skin cancer is a typical common cancer. Melanoma, also known as malignant melanoma, is the most lethal form of skin cancer and responsible for 75% of skin cancer deaths, despite being the least common skin cancer. The best sway to combat that is trying to identify it us earls as possible and treat it with minor surgery. In this paper, I systematically study melanoma and notice that using deeper, wider and higher resolution convolutional neural networks can obtain better performance. Based on these observations, I propose an automated melanoma detection model by analysis of skin lesion images using EfficientNet-B6, which can capture more finegrained features. The experimental cvaluations on a large publicly available dataset ISIC 2020 Challenge Dataset, which is generated by the International Skin Imaging Collaboration and images of it are from several primary medical sources, have demonstrated stale-of-the-art classification performance compared With prior popular melanoma classifiers on the same dataset.
引用
收藏
页码:75 / 78
页数:4
相关论文
共 50 条
  • [1] Deep Convolutional Neural Network for Melanoma Detection using Dermoscopy Images
    Kaur, R.
    GholamHosseini, H.
    Sinha, R.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1524 - 1527
  • [2] Acral melanoma detection using a convolutional neural network for dermoscopy images
    Yu, Chanki
    Yang, Sejung
    Kim, Wonoh
    Jung, Jinwoong
    Chung, Kee-Yang
    Lee, Sang Wook
    Oh, Byungho
    PLOS ONE, 2018, 13 (03):
  • [3] Melanoma Detection by Analysis of Clinical Images Using Convolutional Neural Network
    Nasr-Esfahani, E.
    Samavi, S.
    Karimi, N.
    Soroushmehr, S. M. R.
    Jafari, M. H.
    Ward, K.
    Najarian, K.
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 1373 - 1376
  • [4] MDDC: melanoma detection using discrete wavelet transform and convolutional neural network
    Asadi O.
    Yekkalam A.
    Manthouri M.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (09) : 12959 - 12966
  • [5] Melanoma Detection Using Regular Convolutional Neural Networks
    Abu Ali, Aya
    Al-Marzouqi, Hasan
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTING TECHNOLOGIES AND APPLICATIONS (ICECTA), 2017, : 363 - 367
  • [6] Melanoma Disease Detection Using Convolutional Neural Networks
    Sanketh, Ravva Sai
    Bala, M. Madhu
    Reddy, Panati Viswa Narendra
    Kumar, G. V. S. Phani
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1031 - 1037
  • [7] Schizophrenia Detection Using Convolutional Neural Network
    Skunda, Juraj
    Polec, Jaroslav
    Nerusil, Boris
    Malisova, Eva
    PROCEEDINGS OF 63RD INTERNATIONAL SYMPOSIUM ELMAR-2021, 2021, : 151 - 154
  • [8] A Trail Detection Using Convolutional Neural Network
    Kim, Jeonghyeok
    Lee, Heezin
    Kang, Sanggil
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON EMERGING DATABASES: TECHNOLOGIES, APPLICATIONS, AND THEORY, 2018, 461 : 275 - 279
  • [9] Detection of Plastics Using Convolutional Neural Network
    Latha, R. S.
    Sreekanth, G. R.
    Amarnath, A. C.
    Abishek, K. K.
    Deepakraj, K.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (04): : 224 - 227
  • [10] Edge Detection Using Convolutional Neural Network
    Wang, Ruohui
    ADVANCES IN NEURAL NETWORKS - ISNN 2016, 2016, 9719 : 12 - 20