Generalised least squares (GLS) estimation of the difference parameter in long memory (ARFIMA) processes

被引:1
|
作者
Hudson, R [1 ]
Lawoko, CR [1 ]
机构
[1] Queensland Univ Technol, Fac Business, Sch Mkt & Int Business, Brisbane, Qld 4001, Australia
关键词
D O I
10.1081/STA-120013017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the problem of estimating the fractional difference parameter in a long-memory time series (ARFIMA) process, the GPH technique is quite popular because of its simplicity and lack of need for prior knowledge of the parameters defining the ARMA processes. However it has now been established that the (OLS) assumptions behind the GPH technique do not hold for these processes in general (e.g. Hurvich and Beltrao, 1993). In view of this, an obvious alternative would be to use the generalised least squares method (GLS) for estimation and inference on this parameter. In this paper, we use the results in Hurvich and Beltrao to propose a GLS procedure for estimating the differencing parameter.
引用
收藏
页码:1629 / 1646
页数:18
相关论文
共 50 条
  • [41] MODEL-PARAMETER ESTIMATION USING LEAST-SQUARES
    SAEZ, PB
    RITTMANN, BE
    WATER RESEARCH, 1992, 26 (06) : 789 - 796
  • [42] A revisit to least-squares parameter estimation of ARMAX systems
    Zheng, WX
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 3587 - 3592
  • [43] LEAST-SQUARES PHASE ESTIMATION FROM THE PHASE DIFFERENCE
    TAKAJO, H
    TAKAHASHI, T
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1988, 5 (03): : 416 - 425
  • [44] On asymptotic normality of nonlinear least squares for sinusoidal parameter estimation
    Li, Ta-Hsin
    Song, Kai-Sheng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (09) : 4511 - 4515
  • [45] Direct Pharmacokinetic Parameter Estimation using Weighted Least Squares
    McLennan, Andrew
    Brady, Michael
    MEDICAL IMAGING 2010: PHYSICS OF MEDICAL IMAGING, 2010, 7622
  • [46] A fast iterative least squares algorithm for linear parameter estimation
    Zhu, Hongjun
    Gao, Chao
    Guo, Yongcai
    ICIC Express Letters, 2014, 8 (08): : 2291 - 2296
  • [47] Decomposition methods for solving least-squares parameter estimation
    Niu, SS
    Ljung, L
    Bjorck, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (11) : 2847 - 2852
  • [48] Efficient Batch and Recursive Least Squares for Matrix Parameter Estimation
    Lai, Brian
    Bernstein, Dennis S.
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1403 - 1408
  • [49] On the estimation of an autoregressive parameter on the basis of the generalized method of least squares
    Konev, VV
    Pergamenshchikov, SM
    RUSSIAN MATHEMATICAL SURVEYS, 1995, 50 (06) : 1276 - 1277
  • [50] NUMERICAL METHODS IN LEAST-SQUARES PARAMETER ESTIMATION.
    AGGARWAL, ANIL K.
    1982, V 30 (N 2): : 181 - 189