Generalised least squares (GLS) estimation of the difference parameter in long memory (ARFIMA) processes

被引:1
|
作者
Hudson, R [1 ]
Lawoko, CR [1 ]
机构
[1] Queensland Univ Technol, Fac Business, Sch Mkt & Int Business, Brisbane, Qld 4001, Australia
关键词
D O I
10.1081/STA-120013017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the problem of estimating the fractional difference parameter in a long-memory time series (ARFIMA) process, the GPH technique is quite popular because of its simplicity and lack of need for prior knowledge of the parameters defining the ARMA processes. However it has now been established that the (OLS) assumptions behind the GPH technique do not hold for these processes in general (e.g. Hurvich and Beltrao, 1993). In view of this, an obvious alternative would be to use the generalised least squares method (GLS) for estimation and inference on this parameter. In this paper, we use the results in Hurvich and Beltrao to propose a GLS procedure for estimating the differencing parameter.
引用
收藏
页码:1629 / 1646
页数:18
相关论文
共 50 条
  • [21] LEAST SQUARES PARAMETER ESTIMATION IN CHAOTIC DIFFERENTIAL EQUATIONS
    Kallrath, Josef
    Schloeder, Johannes P.
    Bock, Hans Georg
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1993, 56 (1-2): : 353 - 371
  • [22] Surface fitting and parameter estimation with nonlinear least squares
    Umea Univ, Umea, Sweden
    Optim Method Software, 3 (247-269):
  • [23] CONSTRAINED AND WEIGHTED LEAST SQUARES PROCEDURES FOR PARAMETER ESTIMATION
    VALLERSCHAMP, RE
    PERLMUTTER, DD
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1971, 10 (01): : 150 - +
  • [24] PARAMETER-ESTIMATION BY LEAST-SQUARES METHODS
    JOHNSON, ML
    FAUNT, LM
    METHODS IN ENZYMOLOGY, 1992, 210 : 1 - 37
  • [25] Parameter estimation with discrete linear least squares method
    Wu, LC
    Lee, WC
    Huang, CL
    Wang, JK
    Chiu, PF
    Liu, RS
    MODELLING AND CONTROL IN BIOMEDICAL SYSTEMS 2003 (INCLUDING BIOLOGICAL SYSTEMS), 2003, : 135 - 138
  • [26] Tuning Parameter Estimation in Penalized Least Squares Methodology
    Androulakis, E.
    Koukouvinos, C.
    Mylona, K.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (09) : 1444 - 1457
  • [27] On parameter estimation for locally stationary long-memory processes
    Beran, Jan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (03) : 900 - 915
  • [28] Generalised least squares estimation of regularly varying space-time processes based on flexible observation schemes
    Sven Buhl
    Claudia Klüppelberg
    Extremes, 2019, 22 : 223 - 269
  • [29] Generalised least squares estimation of regularly varying space-time processes based on flexible observation schemes
    Buhl, Sven
    Klueppelberg, Claudia
    EXTREMES, 2019, 22 (02) : 223 - 269
  • [30] Using wavelets to obtain a consistent ordinary least squares estimator of the long-memory parameter
    Jensen, MJ
    JOURNAL OF FORECASTING, 1999, 18 (01) : 17 - 32