Risk Sensitive Robust Support Vector Machines

被引:9
|
作者
Xu, Huan [1 ]
Caramanis, Constantine [1 ]
Mannor, Shie [2 ,3 ]
Yun, Sungho [1 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 2T5, Canada
[3] Dept Elect Engn, Technion, Israel
基金
以色列科学基金会; 加拿大自然科学与工程研究理事会;
关键词
UNCERTAIN; OPTIMIZATION;
D O I
10.1109/CDC.2009.5400598
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new family of classification algorithms in the spirit of support vector machines, that builds in non-conservative protection to noise and controls overfitting. Our formulation is based on a softer version of robust optimization called comprehensive robustness. We show that this formulation is equivalent to regularization by any arbitrary convex regularizer. We explain how the connection of comprehensive robustness to convex risk-measures can be used to design risk-constrained classifiers with robustness to the input distribution. Our formulations lead to easily solved convex problems. Empirical results show the promise of comprehensive robust classifiers in handling risk sensitive classification.
引用
收藏
页码:4655 / 4661
页数:7
相关论文
共 50 条
  • [41] Robust and Sparse Linear Programming Twin Support Vector Machines
    Tanveer, M.
    COGNITIVE COMPUTATION, 2015, 7 (01) : 137 - 149
  • [42] Face recognition using support vector machines with the robust feature
    Dai, G
    Zhou, CL
    RO-MAN 2003: 12TH IEEE INTERNATIONAL WORKSHOP ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, PROCEEDINGS, 2003, : 49 - 53
  • [43] Efficient and robust phrase chunking using support vector machines
    Wu, Yu-Chieh
    Yang, Jie-Chi
    Lee, Yuc-Shi
    Yen, Show-Jane
    INFORMATION RETRIEVAL TECHNOLOGY, PROCEEDINGS, 2006, 4182 : 350 - 361
  • [44] Large-scale robust transductive support vector machines
    Cevikalp, Hakan
    Franc, Vojtech
    NEUROCOMPUTING, 2017, 235 : 199 - 209
  • [45] Investigation of robust least squares-support vector machines
    Gu, Yanping
    Zhao, Wenjie
    Wu, Zhansong
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2015, 55 (04): : 396 - 402
  • [46] Robust cephalometric landmark identification using support vector machines
    Chakrabartty, S
    Yagi, M
    Shibata, T
    Cauwenberghs, G
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL III, PROCEEDINGS, 2003, : 429 - 432
  • [47] Robust Support Vector Machines for Classification with Nonconvex and Smooth Losses
    Feng, Yunlong
    Yang, Yuning
    Huang, Xiaolin
    Mehrkanoon, Siamak
    Suykens, Johan A. K.
    NEURAL COMPUTATION, 2016, 28 (06) : 1217 - 1247
  • [48] Cost-sensitive Feature Selection for Support Vector Machines
    Benitez-Pena, S.
    Blanquero, R.
    Carrizosa, E.
    Ramirez-Cobo, P.
    COMPUTERS & OPERATIONS RESEARCH, 2019, 106 : 169 - 178
  • [49] Cost-sensitive probabilistic predictions for support vector machines
    Benitez-Pena, Sandra
    Blanquero, Rafael
    Carrizosa, Emilio
    Ramirez-Cobo, Pepa
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 314 (01) : 268 - 279
  • [50] Incorporation of Support Vector Machines in the LIBS Toolbox for Sensitive and Robust Classification Amidst Unexpected Sample and System Variability
    Dingari, Narahara Chari
    Barman, Ishan
    Myakalwar, Ashwin Kumar
    Tewari, Surya P.
    Gundawar, Manoj Kumar
    ANALYTICAL CHEMISTRY, 2012, 84 (06) : 2686 - 2694