Risk Sensitive Robust Support Vector Machines

被引:9
|
作者
Xu, Huan [1 ]
Caramanis, Constantine [1 ]
Mannor, Shie [2 ,3 ]
Yun, Sungho [1 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 2T5, Canada
[3] Dept Elect Engn, Technion, Israel
基金
以色列科学基金会; 加拿大自然科学与工程研究理事会;
关键词
UNCERTAIN; OPTIMIZATION;
D O I
10.1109/CDC.2009.5400598
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new family of classification algorithms in the spirit of support vector machines, that builds in non-conservative protection to noise and controls overfitting. Our formulation is based on a softer version of robust optimization called comprehensive robustness. We show that this formulation is equivalent to regularization by any arbitrary convex regularizer. We explain how the connection of comprehensive robustness to convex risk-measures can be used to design risk-constrained classifiers with robustness to the input distribution. Our formulations lead to easily solved convex problems. Empirical results show the promise of comprehensive robust classifiers in handling risk sensitive classification.
引用
收藏
页码:4655 / 4661
页数:7
相关论文
共 50 条
  • [21] Cost-sensitive support vector machines
    Iranmehr, Arya
    Masnadi-Shirazi, Hamed
    Vasconcelos, Nuno
    NEUROCOMPUTING, 2019, 343 : 50 - 64
  • [22] Robust support vector machines for multiple instance learning
    Mohammad H. Poursaeidi
    O. Erhun Kundakcioglu
    Annals of Operations Research, 2014, 216 : 205 - 227
  • [23] Learning from crowds with robust support vector machines
    Wenjun Yang
    Chaoqun Li
    Liangxiao Jiang
    Science China Information Sciences, 2023, 66
  • [24] Robust truncated hinge loss support vector machines
    Wu, Yichao
    Liu, Yufeng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) : 974 - 983
  • [25] Learning from crowds with robust support vector machines
    Wenjun YANG
    Chaoqun LI
    Liangxiao JIANG
    ScienceChina(InformationSciences), 2023, 66 (03) : 133 - 149
  • [26] An accelerated decomposition algorithm for robust support vector machines
    Hu, WJ
    Song, Q
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2004, 51 (05) : 234 - 240
  • [27] Support vector machines for robust channel estimation in OFDM
    Fernandez-Getino Garcia, M. Julia
    Luis Rojo-Alvarez, Jose
    Alonso-Atienza, Felipe
    Martinez-Ramon, Manel
    IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (07) : 397 - 400
  • [28] Robust Cost Sensitive Support Vector Machine
    Katsumata, Shuichi
    Takeda, Akiko
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 434 - 443
  • [29] Weighted Proximal Support Vector Machines: Robust Classification
    ZHANG Meng~1
    2. Academy of Microelectronics and Information Technology
    3. Department of Mathematics and Physics
    Wuhan University Journal of Natural Sciences, 2005, (03) : 507 - 510
  • [30] Hybrid robust support vector machines for regression with outliers
    Chuang, Chen-Chia
    Lee, Zne-Jung
    APPLIED SOFT COMPUTING, 2011, 11 (01) : 64 - 72