Combining multiple clusterings via k-modes algorithm

被引:0
|
作者
Luo, Huilan [1 ]
Kong, Fansheng
Li, Yixiao
机构
[1] Zhejiang Univ, Artificial Intelligence Inst, Hangzhou 310027, Peoples R China
[2] Jiangxi Univ Sci & Technol, Inst Informat Engn, Gangzhou 341000, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering ensembles have emerged as a powerful method for improving both the robustness and the stability of unsupervised classification solutions. However, finding a consensus clustering from multiple partitions is a difficult problem that can be approached from graph-based, combinatorial or statistical perspectives. A consensus scheme via the k-modes algorithm is proposed in this paper. A combined partition is found as a solution to the corresponding categorical data clustering problem using the k-modes algorithm. This study compares the performance of the k-modes consensus algorithm with other fusion approaches for clustering ensembles. Experimental results demonstrate the effectiveness of the proposed method.
引用
收藏
页码:308 / 315
页数:8
相关论文
共 50 条
  • [41] Incremental Rough Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    Lingras, Pawan
    MULTI-DISCIPLINARY TRENDS IN ARTIFICIAL INTELLIGENCE, 2013, 8271 : 13 - 24
  • [42] Combining Multiple K-Means Clusterings of Chemical Structures Using Cluster-Based Similarity Partitioning Algorithm
    Saeedi, Faisal
    Salim, Naomie
    Abdo, Ammar
    Hentabli, Hamza
    ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS, 2012, 322 : 304 - +
  • [43] Approximation algorithms for K-modes clustering
    He, Zengyou
    Deng, Shengchun
    Xu, Xiaofei
    COMPUTATIONAL INTELLIGENCE, PT 2, PROCEEDINGS, 2006, 4114 : 296 - 302
  • [44] Decremental Rough Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    Lingras, Pawan
    ADAPTIVE AND INTELLIGENT SYSTEMS, ICAIS 2014, 2014, 8779 : 50 - 59
  • [45] On combining multiple clusterings: an overview and a new perspective
    Tao Li
    Mitsunori Ogihara
    Sheng Ma
    Applied Intelligence, 2010, 33 : 207 - 219
  • [46] Combining multiple clusterings for protein structure prediction
    Sakar, C. Okan
    Kursun, Olcay
    Seker, Huseyin
    Gurgen, Fikret
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2014, 10 (02) : 162 - 174
  • [47] On combining multiple clusterings: an overview and a new perspective
    Li, Tao
    Ogihara, Mitsunori
    Ma, Sheng
    APPLIED INTELLIGENCE, 2010, 33 (02) : 207 - 219
  • [48] A novel initialisation based on hospital-resident assignment for the k-modes algorithm
    Gillard, Jonathan
    Knight, Vincent
    Wilde, Henry
    SOFT COMPUTING, 2023, 27 (14) : 9441 - 9457
  • [49] A dissimilarity measure for mixed nominal and ordinal attribute data in k-Modes algorithm
    Yuan, Fang
    Yang, Youlong
    Yuan, Tiantian
    APPLIED INTELLIGENCE, 2020, 50 (05) : 1498 - 1509
  • [50] A load clustering algorithm based on discrete wavelet transform and fuzzy K-modes
    Zhang J.
    Zhang Y.
    Hong J.
    Gao H.
    Liu J.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2019, 39 (02): : 100 - 106and122