Combining multiple clusterings via k-modes algorithm

被引:0
|
作者
Luo, Huilan [1 ]
Kong, Fansheng
Li, Yixiao
机构
[1] Zhejiang Univ, Artificial Intelligence Inst, Hangzhou 310027, Peoples R China
[2] Jiangxi Univ Sci & Technol, Inst Informat Engn, Gangzhou 341000, Peoples R China
来源
ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS | 2006年 / 4093卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering ensembles have emerged as a powerful method for improving both the robustness and the stability of unsupervised classification solutions. However, finding a consensus clustering from multiple partitions is a difficult problem that can be approached from graph-based, combinatorial or statistical perspectives. A consensus scheme via the k-modes algorithm is proposed in this paper. A combined partition is found as a solution to the corresponding categorical data clustering problem using the k-modes algorithm. This study compares the performance of the k-modes consensus algorithm with other fusion approaches for clustering ensembles. Experimental results demonstrate the effectiveness of the proposed method.
引用
收藏
页码:308 / 315
页数:8
相关论文
共 50 条
  • [21] K-Modes clustering algorithm based on a new distance measure
    Liang, Jiye
    Bai, Liang
    Cao, Fuyuan
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2010, 47 (10): : 1749 - 1755
  • [22] Computation of Initial Modes for K-modes Clustering Algorithm using Evidence Accumulation
    Khan, Shehroz S.
    Kant, Shri
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2784 - 2789
  • [23] Combining multiple weak clusterings
    Topchy, A
    Jain, AK
    Punch, W
    THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2003, : 331 - 338
  • [24] A weighting k-modes algorithm for subspace clustering of categorical data
    Cao, Fuyuan
    Liang, Jiye
    Li, Deyu
    Zhao, Xingwang
    NEUROCOMPUTING, 2013, 108 : 23 - 30
  • [25] A genetic fuzzy k-Modes algorithm for clustering categorical data
    Gan, G.
    Wu, J.
    Yang, Z.
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 1615 - 1620
  • [26] Scalable Laplacian K-modes
    Ziko, Imtiaz Masud
    Granger, Eric
    Ben Ayed, Ismail
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [27] Combining multiple clusterings using information theory based genetic algorithm
    Luo, Huilan
    Jing, Furong
    Xie, Xiaobing
    2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, 2006, : 84 - 89
  • [28] A note on K-modes clustering
    Huang, ZX
    Ng, MK
    JOURNAL OF CLASSIFICATION, 2003, 20 (02) : 257 - 261
  • [29] A Note on K-modes Clustering
    Zhexue Huang
    Michael K. Ng
    Journal of Classification, 2003, 20 : 257 - 261
  • [30] Decremental Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    Lingras, Pawan
    TWELFTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2013), 2013, 257 : 15 - 24