Application of the active learning method to the retrieval of pigment from spectral remote sensing reflectance data

被引:11
|
作者
Shahraiyni, H. Taheri [1 ,2 ]
Shouraki, S. Bagheri [3 ]
Fell, F. [4 ]
Schaale, M. [1 ]
Fischer, J. [1 ]
Tavakoli, A. [5 ]
Preusker, R. [1 ]
Tajrishy, M. [2 ]
Vatandoust, M. [6 ]
Khodaparast, H. [6 ]
机构
[1] Free Univ Berlin, Inst Space Sci, D-12165 Berlin, Germany
[2] Sharif Univ Technol, Dept Civil Engn, Tehran, Iran
[3] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
[4] Informus GmbH, D-13355 Berlin, Germany
[5] Amirkabir Univ Technol, Dept Elect Engn, Tehran, Iran
[6] Inland Waters Aquaculture Inst, Bandar Anzali, Iran
关键词
OCEAN COLOR; ALGORITHM;
D O I
10.1080/01431160802448927
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Due to the noise that is present in remote sensing data, a robust method to retrieve information is needed. In this study, the active learning method (ALM) is applied to spectral remote sensing reflectance data to retrieve in-water pigment. The heart of the ALM is a fuzzy interpolation method that is called the ink drop spread (IDS). Three datasets (SeaBAM, synthetic and NOMAD) are used for the evaluation of the selected ALM approach. Comparison of the ALM with the ocean colour 4 (OC4) algorithm and the artificial neural network (ANN) algorithm demonstrated the robustness of the ALM approach in retrieval of in-water constituents from remote sensing reflectance data. In addition, the ALM identified and ranked the most relevant wavelengths for chlorophyll and pigment retrieval.
引用
收藏
页码:1045 / 1065
页数:21
相关论文
共 50 条
  • [31] Optical Modeling of Spectral Backscattering and Remote Sensing Reflectance From Emiliania huxleyi Blooms
    Neukermans, Griet
    Fournier, Georges
    FRONTIERS IN MARINE SCIENCE, 2018, 5
  • [32] An Application of Ternary Hash Retrieval Method for Remote Sensing Images in Panoramic Video
    Jing, Weipeng
    Zhang, Duanpeng
    Song, Houbing
    IEEE ACCESS, 2020, 8 : 140822 - 140830
  • [33] Active-passive Microwave Remote Sensing Data Combination for Retrieval of Soil Moisture
    Zhou Min-lu
    Guan Ze-qun
    INTERNATIONAL SYMPOSIUM ON LIDAR AND RADAR MAPPING 2011: TECHNOLOGIES AND APPLICATIONS, 2011, 8286
  • [34] Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance
    Kolluru, Srinivas
    Tiwari, Surya Prakash
    Gedam, Shirishkumar S.
    REMOTE SENSING, 2021, 13 (09)
  • [35] Retrieval of Inherent Optical Properties for Turbid Inland Waters From Remote-Sensing Reflectance
    Yang, Wei
    Matsushita, Bunkei
    Chen, Jin
    Yoshimura, Kazuya
    Fukushima, Takehiko
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (06): : 3761 - 3773
  • [36] Remote sensing of ocean colour: Towards algorithms for retrieval of pigment composition
    Sathyendranath, S
    Stuart, V
    Platt, T
    Bouman, H
    Ulloa, O
    Maass, H
    INDIAN JOURNAL OF MARINE SCIENCES, 2005, 34 (04): : 333 - 340
  • [37] First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
    Melsheimer, Christian
    Spreen, Gunnar
    Ye, Yufang
    Shokr, Mohammed
    CRYOSPHERE, 2023, 17 (01): : 105 - 126
  • [38] Air temperature retrieval from remote sensing data based on thermodynamics
    Sun, YJ
    Wang, JF
    Zhang, RH
    Gillies, RR
    Xue, Y
    Bo, YC
    THEORETICAL AND APPLIED CLIMATOLOGY, 2005, 80 (01) : 37 - 48
  • [39] Air temperature retrieval from remote sensing data based on thermodynamics
    Y.-J. Sun
    J.-F. Wang
    R.-H. Zhang
    R. R. Gillies
    Y. Xue
    Y.-C. Bo
    Theoretical and Applied Climatology, 2005, 80 : 37 - 48
  • [40] Learning from Data for Remote Sensing Image Analysis
    Bazi, Yakoub
    Cavallaro, Gabriele
    Demir, Begum
    Melgani, Farid
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (15-16) : 5527 - 5533