Application of the active learning method to the retrieval of pigment from spectral remote sensing reflectance data

被引:11
|
作者
Shahraiyni, H. Taheri [1 ,2 ]
Shouraki, S. Bagheri [3 ]
Fell, F. [4 ]
Schaale, M. [1 ]
Fischer, J. [1 ]
Tavakoli, A. [5 ]
Preusker, R. [1 ]
Tajrishy, M. [2 ]
Vatandoust, M. [6 ]
Khodaparast, H. [6 ]
机构
[1] Free Univ Berlin, Inst Space Sci, D-12165 Berlin, Germany
[2] Sharif Univ Technol, Dept Civil Engn, Tehran, Iran
[3] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
[4] Informus GmbH, D-13355 Berlin, Germany
[5] Amirkabir Univ Technol, Dept Elect Engn, Tehran, Iran
[6] Inland Waters Aquaculture Inst, Bandar Anzali, Iran
关键词
OCEAN COLOR; ALGORITHM;
D O I
10.1080/01431160802448927
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Due to the noise that is present in remote sensing data, a robust method to retrieve information is needed. In this study, the active learning method (ALM) is applied to spectral remote sensing reflectance data to retrieve in-water pigment. The heart of the ALM is a fuzzy interpolation method that is called the ink drop spread (IDS). Three datasets (SeaBAM, synthetic and NOMAD) are used for the evaluation of the selected ALM approach. Comparison of the ALM with the ocean colour 4 (OC4) algorithm and the artificial neural network (ANN) algorithm demonstrated the robustness of the ALM approach in retrieval of in-water constituents from remote sensing reflectance data. In addition, the ALM identified and ranked the most relevant wavelengths for chlorophyll and pigment retrieval.
引用
收藏
页码:1045 / 1065
页数:21
相关论文
共 50 条
  • [21] A multi-spectral non-local method for retrieval of boundary layer cloud properties from optical remote sensing data
    Iwabuchi, H
    Hayasaka, T
    REMOTE SENSING OF ENVIRONMENT, 2003, 88 (03) : 294 - 308
  • [22] Reflectance processing of remote sensing spectroradiometer data
    Peddle, DR
    White, HP
    Soffer, RJ
    Miller, JR
    LeDrew, EF
    COMPUTERS & GEOSCIENCES, 2001, 27 (02) : 203 - 213
  • [23] Retrieval of chlorophyll absorption spectra from remote sensing reflectance of turbid coastal waters
    Liew, SC
    Lim, KH
    Kwoh, LK
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 284 - 286
  • [24] Image retrieval from remote sensing big data: A survey
    Li, Yansheng
    Ma, Jiayi
    Zhang, Yongjun
    INFORMATION FUSION, 2021, 67 : 94 - 115
  • [25] A note on suitable viewing configuration for retrieval of forest understory reflectance from multi-angle remote sensing data
    Pisek, Jan
    Lang, Mait
    Kuusk, Joel
    REMOTE SENSING OF ENVIRONMENT, 2015, 156 : 242 - 246
  • [26] Spectral Adjustment Model's Analysis and Application to Remote Sensing Data
    Villaescusa-Nadal, Jose Luis
    Franch, Belen
    Roger, Jean-Claude
    Vermote, Eric F.
    Skakun, Sergii
    Justice, Chris
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (03) : 961 - 972
  • [27] Transferring spectral libraries of canopy reflectance for crop classification using hyperspectral remote sensing data
    Nidamanuri, Rama Rao
    Zbell, Bernd
    BIOSYSTEMS ENGINEERING, 2011, 110 (03) : 231 - 246
  • [28] SPECTRAL REFLECTANCE PROPERTIES OF HYDROCARBONS - REMOTE-SENSING IMPLICATIONS
    CLOUTIS, EA
    SCIENCE, 1989, 245 (4914) : 165 - 168
  • [29] Use of a remote sensing method to estimate the influence of anthropogenic factors on the spectral reflectance of plant species
    Krezhova, Dora D.
    Yanev, Tony K.
    SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 738 - 738
  • [30] SPECTRAL ACTIVE CLUSTERING OF REMOTE SENSING IMAGES
    Wang, Zifeng
    Xia, Gui-Song
    Xiong, Caiming
    Zhang, Liangpei
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1737 - 1740