Application of the active learning method to the retrieval of pigment from spectral remote sensing reflectance data

被引:11
|
作者
Shahraiyni, H. Taheri [1 ,2 ]
Shouraki, S. Bagheri [3 ]
Fell, F. [4 ]
Schaale, M. [1 ]
Fischer, J. [1 ]
Tavakoli, A. [5 ]
Preusker, R. [1 ]
Tajrishy, M. [2 ]
Vatandoust, M. [6 ]
Khodaparast, H. [6 ]
机构
[1] Free Univ Berlin, Inst Space Sci, D-12165 Berlin, Germany
[2] Sharif Univ Technol, Dept Civil Engn, Tehran, Iran
[3] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
[4] Informus GmbH, D-13355 Berlin, Germany
[5] Amirkabir Univ Technol, Dept Elect Engn, Tehran, Iran
[6] Inland Waters Aquaculture Inst, Bandar Anzali, Iran
关键词
OCEAN COLOR; ALGORITHM;
D O I
10.1080/01431160802448927
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Due to the noise that is present in remote sensing data, a robust method to retrieve information is needed. In this study, the active learning method (ALM) is applied to spectral remote sensing reflectance data to retrieve in-water pigment. The heart of the ALM is a fuzzy interpolation method that is called the ink drop spread (IDS). Three datasets (SeaBAM, synthetic and NOMAD) are used for the evaluation of the selected ALM approach. Comparison of the ALM with the ocean colour 4 (OC4) algorithm and the artificial neural network (ANN) algorithm demonstrated the robustness of the ALM approach in retrieval of in-water constituents from remote sensing reflectance data. In addition, the ALM identified and ranked the most relevant wavelengths for chlorophyll and pigment retrieval.
引用
收藏
页码:1045 / 1065
页数:21
相关论文
共 50 条
  • [1] A METHOD FOR ATMOSPHERIC PARAMETERS AND SURFACE REFLECTANCE RETRIEVAL FROM HYPERSPECTRAL REMOTE SENSING DATA
    Liu, Yaokai
    Wang, Ning
    Ma, Lingling
    Li, Chuanrong
    Tang, Lingli
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [2] STATISTICAL RETRIEVAL OF THE SPECTRAL REFLECTANCE OF THE EARTHS SURFACE IN REMOTE SPACE SENSING
    VALENTYUK, AN
    SOVIET JOURNAL OF REMOTE SENSING, 1990, 8 (01): : 131 - 140
  • [3] A Novel Active Learning Method for Content Based Remote Sensing Image Retrieval
    Demir, Begum
    Bruzzone, Lorenzo
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 2130 - 2133
  • [4] Reflectance Retrieval from Lunar Surface Remote Sensing Image
    Li Xianhua
    Zeng Qihong
    Luo Qingzhou
    Huang Rui
    Shi Xiangyong
    2008 CHINA-JAPAN JOINT MICROWAVE CONFERENCE (CJMW 2008), VOLS 1 AND 2, 2008, : 239 - +
  • [5] An active learning method with entropy weighting subspace clustering for remote sensing image retrieval
    Sudha, S. K.
    Aji, S.
    APPLIED SOFT COMPUTING, 2022, 125
  • [6] An active learning method with entropy weighting subspace clustering for remote sensing image retrieval
    Sudha, S. K.
    Aji, S.
    APPLIED SOFT COMPUTING, 2022, 125
  • [7] Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land
    Bassani, Cristiana
    Cavalli, Rosa Maria
    Pignatti, Stefano
    SENSORS, 2010, 10 (07) : 6421 - 6438
  • [8] Retrieval of chlorophyll from remote-sensing reflectance in the China seas
    He, MX
    Liu, ZS
    Du, KP
    Li, LP
    Chen, R
    Carder, KL
    Lee, ZP
    APPLIED OPTICS, 2000, 39 (15) : 2467 - 2474
  • [9] Retrieval of chlorophyll from remote-sensing reflectance in the China seas
    He, Ming-Xia
    Liu, Zhi-Shen
    Du, Ke-Ping
    Li, Li-Ping
    Chen, Rui
    Carder, Kendall L.
    Lee, Zhong-Ping
    Applied Optics, 2000, 39 (15): : 2467 - 2474
  • [10] Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance
    Chami, Malik
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2007, 112 (C5)