UNIFORM RECTIFIABILITY FROM CARLESON MEASURE ESTIMATES AND ε-APPROXIMABILITY OF BOUNDED HARMONIC FUNCTIONS

被引:31
|
作者
Garnett, John [1 ]
Mourgoglou, Mihalis [2 ,3 ,4 ]
Tolsa, Xavier [5 ,6 ,7 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Basque Ctr Appl Math, Bilbao, Spain
[3] Univ Basque Country, Dept Matemat, Bilbao, Spain
[4] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
[5] Passeig Lluis Co, Catalan Inst Res & Adv Studies, Barcelona, Catalonia, Spain
[6] Univ Autonoma Barcelona, Dept Matemat, Bellaterra, Barcelona, Spain
[7] Univ Autonoma Barcelona, Barcelona Grad Sch Math, Bellaterra, Barcelona, Spain
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
CALDERON-ZYGMUND OPERATORS; POISSON KERNELS; RIESZ TRANSFORM; APPROXIMATION; HYPERSURFACES; PROPERTY;
D O I
10.1215/00127094-2017-0057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of Rn+1, n >= 1, be a corkscrew domain with Ahlfors-David regular boundary. In this article we prove that partial derivative Omega is uniformly n-rectifiable if every bounded harmonic function on Omega is epsilon-approximable or if every bounded harmonic function on Omega satisfies a suitable square-function Carleson measure estimate. In particular, this applies to the case when Omega = Rn+1 \ E and E is Ahlfors-David regular. Our results establish a conjecture posed by Hofmann, Martell, and Mayboroda, in which they proved the converse statements. Here we also obtain two additional criteria for uniform rectifiability, one in terms of the so-called S < N estimates and another in terms of a suitable corona decomposition involving harmonic measure.
引用
收藏
页码:1473 / 1524
页数:52
相关论文
共 46 条