UNIFORM RECTIFIABILITY FROM CARLESON MEASURE ESTIMATES AND ε-APPROXIMABILITY OF BOUNDED HARMONIC FUNCTIONS

被引:31
|
作者
Garnett, John [1 ]
Mourgoglou, Mihalis [2 ,3 ,4 ]
Tolsa, Xavier [5 ,6 ,7 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Basque Ctr Appl Math, Bilbao, Spain
[3] Univ Basque Country, Dept Matemat, Bilbao, Spain
[4] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
[5] Passeig Lluis Co, Catalan Inst Res & Adv Studies, Barcelona, Catalonia, Spain
[6] Univ Autonoma Barcelona, Dept Matemat, Bellaterra, Barcelona, Spain
[7] Univ Autonoma Barcelona, Barcelona Grad Sch Math, Bellaterra, Barcelona, Spain
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
CALDERON-ZYGMUND OPERATORS; POISSON KERNELS; RIESZ TRANSFORM; APPROXIMATION; HYPERSURFACES; PROPERTY;
D O I
10.1215/00127094-2017-0057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of Rn+1, n >= 1, be a corkscrew domain with Ahlfors-David regular boundary. In this article we prove that partial derivative Omega is uniformly n-rectifiable if every bounded harmonic function on Omega is epsilon-approximable or if every bounded harmonic function on Omega satisfies a suitable square-function Carleson measure estimate. In particular, this applies to the case when Omega = Rn+1 \ E and E is Ahlfors-David regular. Our results establish a conjecture posed by Hofmann, Martell, and Mayboroda, in which they proved the converse statements. Here we also obtain two additional criteria for uniform rectifiability, one in terms of the so-called S < N estimates and another in terms of a suitable corona decomposition involving harmonic measure.
引用
收藏
页码:1473 / 1524
页数:52
相关论文
共 46 条
  • [1] UNIFORM RECTIFIABILITY, CARLESON MEASURE ESTIMATES, AND APPROXIMATION OF HARMONIC FUNCTIONS
    Hofmann, Steve
    Maria Martell, Jose
    Mayboroda, Svitlana
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (12) : 2331 - 2389
  • [2] UNIFORM RECTIFIABILITY AND ε-APPROXIMABILITY OF HARMONIC FUNCTIONS IN Lp
    Hofmann, Steve
    Tapiola, Olli
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (04) : 1595 - 1638
  • [3] ε-APPROXIMABILITY OF HARMONIC FUNCTIONS IN Lp IMPLIES UNIFORM RECTIFIABILITY
    Bortz, Simon
    Tapiola, Olli
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (05) : 2107 - 2121
  • [4] Carleson measure estimates and ε-approximation for bounded harmonic functions, without Ahlfors regularity assumptions
    Garnett, John
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (01) : 323 - 351
  • [5] Uniform Rectifiability, Elliptic Measure, Square Functions, and ε-Approximability Via an ACF Monotonicity Formula
    Azzam, Jonas
    Garnett, John
    Mourgoglou, Mihalis
    Tolsa, Xavier
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (13) : 10837 - 10941
  • [6] On Harmonic Measure and Rectifiability in Uniform Domains
    Mihalis Mourgoglou
    The Journal of Geometric Analysis, 2019, 29 : 1193 - 1205
  • [7] On Harmonic Measure and Rectifiability in Uniform Domains
    Mourgoglou, Mihalis
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (02) : 1193 - 1205
  • [8] UNIFORM RECTIFIABILITY AND ELLIPTIC OPERATORS SATISFYING A CARLESON MEASURE CONDITION
    Hofmann, Steve
    Maria Martell, Jose
    Mayboroda, Svitlana
    Toro, Tatiana
    Zhao, Zihui
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (02) : 325 - 401
  • [9] Uniform Rectifiability and Elliptic Operators Satisfying a Carleson Measure Condition
    Steve Hofmann
    José María Martell
    Svitlana Mayboroda
    Tatiana Toro
    Zihui Zhao
    Geometric and Functional Analysis, 2021, 31 : 325 - 401
  • [10] UNIFORM RECTIFIABILITY AND HARMONIC MEASURE, II: POISSON KERNELS IN LP IMPLY UNIFORM RECTIFIABILITY
    Hofmann, Steve
    Maria Martell, Jose
    Uriarte-Tuero, Ignacio
    DUKE MATHEMATICAL JOURNAL, 2014, 163 (08) : 1601 - 1654