A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring

被引:49
|
作者
Maulud, A.
Wang, D.
Romagnoli, J. A. [1 ]
机构
[1] Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA
[2] Univ Sydney, Dept Chem Engn, Sydney, NSW 2006, Australia
关键词
fault detection; orthogonal nonlinear PCA; optimal wavelet decomposition; robust;
D O I
10.1016/j.jprocont.2006.01.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
in this paper a multi-scale nonlinear PCA strategy for process monitoring is proposed. The strategy utilizes the optimal wavelet decomposition in such a way that only the approximation and the highest detail functions are used, thus simplifying the overall structure and making the interpretation at each scale more meaningful. An orthogonal nonlinear PCA procedure is incorporated to capture the nonlinear characteristics with a minimum number of principal components. The proposed nonlinear strategy also eliminates the requirement of nonlinear functions relating the nonlinear principal scores to process measurements for Q-statistics as in other nonlinear PCA process monitoring approaches. In addition, the strategy is considerably robust to the presence of typical outliers. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:671 / 683
页数:13
相关论文
共 50 条
  • [21] Multi-variate mutual information for registration
    Boes, JL
    Meyer, CR
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI'99, PROCEEDINGS, 1999, 1679 : 606 - 612
  • [22] Multi-Channel Multi-Variate Equalizer Design
    Ravikiran Rajagopal
    Lee Potter
    Multidimensional Systems and Signal Processing, 2003, 14 : 105 - 118
  • [23] Multi-variate factorisation of numerical simulations
    Lunt, Daniel J.
    Chandan, Deepak
    Haywood, Alan M.
    Lunt, George M.
    Rougier, Jonathan C.
    Salzmann, Ulrich
    Schmidt, Gavin A.
    Valdes, Paul J.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2021, 14 (07) : 4307 - 4317
  • [24] On Euler products and multi-variate Gaussians
    Hejhal, DA
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (04) : 223 - 226
  • [25] MULTI-VARIATE REGIONS - A FURTHER APPROACH
    JOHNSTON, RJ
    PROFESSIONAL GEOGRAPHER, 1965, 17 (05): : 9 - 12
  • [26] Oblivious Multi-variate Polynomial Evaluation
    Gavin, Gerald
    Minier, Marine
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2009, PROCEEDINGS, 2009, 5922 : 430 - 442
  • [27] Optimal Process Adjustment with Considering Variable Costs for Uni-variate and Multi-variate Production Process
    Fallahnezhad, M. S.
    Ahmadi, E.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2014, 27 (04): : 561 - 572
  • [28] Visualization of Multi-Variate Scientific Data
    Fuchs, R.
    Hauser, H.
    COMPUTER GRAPHICS FORUM, 2009, 28 (06) : 1670 - 1690
  • [29] On a CPD Decomposition of a Multi-Variate Gaussian
    Govaers, Felix
    2018 SYMPOSIUM ON SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2018,
  • [30] Pan-Arctic Climate and Land Cover Trends Derived from Multi-Variate and Multi-Scale Analyses (1981-2012)
    Urban, Marcel
    Forkel, Matthias
    Eberle, Jonas
    Huettich, Christian
    Schmullius, Christiane
    Herold, Martin
    REMOTE SENSING, 2014, 6 (03) : 2296 - 2316