Oblivious Multi-variate Polynomial Evaluation

被引:0
|
作者
Gavin, Gerald [1 ]
Minier, Marine [1 ]
机构
[1] Univ Lyon 1, UCBL, ERIC Lab, F-69622 Villeurbanne, France
关键词
Homomorphic encryption schemes; Oblivious Polynomial Evaluation (OPE); semantic security; COMPUTATION; ENCRYPTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we propose a protocol for Oblivious Polynomial Evaluation (OPE) considering a multi-variate polynomial. There are two parties, Alice who has a secret multi-variate polynomial f and Bob who has an input x = (x(1), ..., x(T)). Thus, Bob wants to compute f(x) without any information leakage: Alice learns nothing about x and Bob learns only what can be inferred from f (x). In [4], the authors proposed a solution for this problem using Oblivious Transfer (OT) protocol only. In this paper, we propose efficient OPE protocols for the multi-variate case based upon additive and multiplicative homomorphic encryption schemes defined on the same domain. Our protocol only reveals the number of monomials.
引用
收藏
页码:430 / 442
页数:13
相关论文
共 50 条
  • [1] Robust Multi-Variate Temporal Features of Multi-Variate Time Series
    Liu, Sicong
    Poccia, Silvestro Roberto
    Candan, K. Selcuk
    Sapino, Maria Luisa
    Wang, Xiaolan
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2018, 14 (01)
  • [2] Evaluation of Trend Localization with Multi-Variate Visualizations
    Livingston, Mark A.
    Decker, Jonathan W.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) : 2053 - 2062
  • [3] Optimizing Loss Functions Through Multi-Variate Taylor Polynomial Parameterization
    Gonzalez, Santiago
    Miikkulainen, Risto
    PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 305 - 313
  • [4] Multi-variate run rules
    Tsai, CH
    Wang, SY
    Chang, CT
    Huang, SH
    PROCESS SYSTEMS ENGINEERING 2003, PTS A AND B, 2003, 15 : 1376 - 1381
  • [5] The multi-variate sampling problem
    Dalenius, T.
    SKANDINAVISK AKTUARIETIDSKRIFT, 1953, 36 (1-2): : 92 - 102
  • [6] MULTI-VARIATE PROBIT ANALYSIS
    ASHFORD, JR
    SOWDEN, RR
    BIOMETRICS, 1970, 26 (03) : 535 - &
  • [7] A multi-variate blind source separation algorithmA multi-variate blind source separation algorithm
    Goldhacker, M.
    Keck, P.
    Igel, A.
    Lang, E. W.
    Tome, A. M.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 151 : 91 - 99
  • [8] Multi-variate mutual information for registration
    Boes, JL
    Meyer, CR
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI'99, PROCEEDINGS, 1999, 1679 : 606 - 612
  • [9] Representation of few-group homogenized cross section by multi-variate polynomial regression
    Dinh Quoc Dang Nguyen
    Masiello, Emiliano
    JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, SNA + MC 2024, 2024, 302
  • [10] Multi-variate factorisation of numerical simulations
    Lunt, Daniel J.
    Chandan, Deepak
    Haywood, Alan M.
    Lunt, George M.
    Rougier, Jonathan C.
    Salzmann, Ulrich
    Schmidt, Gavin A.
    Valdes, Paul J.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2021, 14 (07) : 4307 - 4317