Sharp power mean bounds for Seiffert mean

被引:14
|
作者
Li Yong-min [1 ]
Wang Miao-kun [1 ]
Chu Yu-ming [1 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
基金
中国国家自然科学基金;
关键词
power mean; Seiffert mean; inequality; CONVEX COMBINATION BOUNDS; INEQUALITIES; TERMS;
D O I
10.1007/s11766-014-3008-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we find the greatest value p = log2/(log pi - log 2) = 1.53 aEuro broken vertical bar and the least value q = 5/3 = 1.66 aEuro broken vertical bar such that the double inequality M (p) (a, b) < T(a, b) < M (q) (a, b) holds for all a, b > 0 with a not equal b. Here, M (p) (a, b) and T (a, b) are the p-th power and Seiffert means of two positive numbers a and b, respectively.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 50 条
  • [41] Optimal bounds for two Seiffert-like means by arithmetic mean and harmonic mean
    Zhu, Ling
    Malesevic, Branko
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [42] Optimal bounds for two Seiffert-like means by arithmetic mean and harmonic mean
    Ling Zhu
    Branko Malešević
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [43] NEW SHARP BOUNDS FOR IDENTRIC MEAN IN TERMS OF LOGARITHMIC MEAN AND ARITHMETIC MEAN
    Yang, Zhen-Hang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (04): : 533 - 543
  • [44] Sharp One-Parameter Mean Bounds for Yang Mean
    Qian, Wei-Mao
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [45] Sharp bounds for the lemniscatic mean by the weighted Hölder mean
    Tie-hong Zhao
    Miao-kun Wang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [46] SHARP BOUNDS FOR TOADER MEAN IN TERMS OF CONTRAHARMONIC MEAN WITH APPLICATIONS
    Chu, Yu-Ming
    Wang, Miao-Kun
    Ma, Xiao-Yan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (02): : 161 - 166
  • [47] Sharp bounds for Heinz mean by Heron mean and other means
    Zhu, Ling
    AIMS MATHEMATICS, 2020, 5 (01): : 723 - 731
  • [48] THE FINITE MEAN LIL BOUNDS ARE SHARP
    KLASS, MJ
    ANNALS OF PROBABILITY, 1984, 12 (03): : 907 - 911
  • [49] Bounds for Toader Mean in Terms of Arithmetic and Second Seiffert Means
    He, Zai-Yin
    Jiang, Yue-Ping
    Chug, Yu-Ming
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 561 - 570
  • [50] SHARP BOUNDS FOR NEUMAN-SNDOR MEAN IN TERMS OF THE CONVEX COMBINATION OF QUADRATIC AND FIRST SEIFFERT MEANS
    褚玉明
    赵铁洪
    宋迎清
    ActaMathematicaScientia, 2014, 34 (03) : 797 - 806