Sharp power mean bounds for Seiffert mean

被引:14
|
作者
Li Yong-min [1 ]
Wang Miao-kun [1 ]
Chu Yu-ming [1 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
基金
中国国家自然科学基金;
关键词
power mean; Seiffert mean; inequality; CONVEX COMBINATION BOUNDS; INEQUALITIES; TERMS;
D O I
10.1007/s11766-014-3008-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we find the greatest value p = log2/(log pi - log 2) = 1.53 aEuro broken vertical bar and the least value q = 5/3 = 1.66 aEuro broken vertical bar such that the double inequality M (p) (a, b) < T(a, b) < M (q) (a, b) holds for all a, b > 0 with a not equal b. Here, M (p) (a, b) and T (a, b) are the p-th power and Seiffert means of two positive numbers a and b, respectively.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 50 条
  • [21] Sharp Bounds for the Weighted Geometric Mean of the First Seiffert and Logarithmic Means in terms of Weighted Generalized Heronian Mean
    Matejicka, Ladislav
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [22] THE OPTIMAL GENERALIZED LOGARITHMIC MEAN BOUNDS FOR SEIFFERT’S MEAN
    褚玉明
    王淼坤
    王根娣
    Acta Mathematica Scientia, 2012, (04) : 1619 - 1626
  • [23] Two sharp double inequalities for Seiffert mean
    Yu-Ming Chu
    Miao-Kun Wang
    Wei-Ming Gong
    Journal of Inequalities and Applications, 2011
  • [24] Two sharp double inequalities for Seiffert mean
    Chu, Yu-Ming
    Wang, Miao-Kun
    Gong, Wei-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [25] Sharp Power Mean Bounds for the One-Parameter Harmonic Mean
    Chu, Yu-Ming
    Wu, Li-Min
    Song, Ying-Qing
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [26] Optimal Two Parameter Bounds for the Seiffert Mean
    Sun, Hui
    Song, Ying-Qing
    Chu, Yu-Ming
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [27] Several sharp inequalities about the first Seiffert mean
    Long, Boyong
    Xu, Ling
    Wang, Qihan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [28] Sharp power mean bounds for the lemniscate type means
    Tie-Hong Zhao
    Zhong-Hua Shen
    Yu-Ming Chu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [29] Sharp power mean bounds for the Gaussian hypergeometric function
    Richards, KC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (01) : 303 - 313
  • [30] Sharp power mean bounds for the lemniscate type means
    Zhao, Tie-Hong
    Shen, Zhong-Hua
    Chu, Yu-Ming
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (04)