Operator Jensen inequality for superquadratic functions

被引:46
|
作者
Kian, Mohsen [1 ]
机构
[1] Univ Bojnord, Fac Basic Sci, Dept Math, Bojnord, Iran
关键词
Superquadratic function; Operator Jensen inequality; Convex function; Positive operator; Matrix inequality;
D O I
10.1016/j.laa.2012.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a Jensen operator inequality for superquadratic functions. In particular we extend the inequalityf (< Ax, x >) <= < f(A)x, x > for superquadratic functions and give some applications for our result. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 50 条
  • [31] Operator Jensen's Inequality on C*-algebras
    Xin LI
    Wei WU
    Acta Mathematica Sinica,English Series, 2014, 30 (01) : 35 - 50
  • [32] Operator Jensen's inequality on C*-algebras
    Li, Xin
    Wu, Wei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (01) : 35 - 50
  • [33] REFINEMENTS OF THE OPERATOR JENSEN-MERCER INEQUALITY
    Kian, Mohsen
    Moslehian, Mohammad Sal
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 742 - 753
  • [34] Operator Jensen’s inequality on C*-algebras
    Xin Li
    Wei Wu
    Acta Mathematica Sinica, English Series, 2014, 30 : 35 - 50
  • [35] A SHARPER BOUND FOR THE JENSEN'S OPERATOR INEQUALITY
    Moradi, Hamid Reza
    Furuichi, Shigeru
    Sababheh, Mohammed
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (04) : 747 - 758
  • [36] Generalizations of Jensen-Steffensen and related integral inequalities for superquadratic functions
    Abramovich, Shoshana
    Ivelic, Slavica
    Pecaric, Josip
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (05): : 937 - 949
  • [37] Application of Convex Functions and Jensen Inequality
    Zhong, Hua
    Yang, Xuemei
    Wang, WuSheng
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MANAGEMENT, EDUCATION, INFORMATION AND CONTROL, 2015, 125 : 1321 - 1324
  • [38] JENSEN'S INEQUALITY FOR QUASICONVEX FUNCTIONS
    Dragomir, S. S.
    Pearce, C. E. M.
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (02): : 279 - 291
  • [39] An extension of Jensen's operator inequality and its application to Young inequality
    Moradi, Hamid Reza
    Furuichi, Shigeru
    Mitroi-Symeonidis, Flavia-Corina
    Naseri, Razieh
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 605 - 614
  • [40] An extension of Jensen’s operator inequality and its application to Young inequality
    Hamid Reza Moradi
    Shigeru Furuichi
    Flavia-Corina Mitroi-Symeonidis
    Razieh Naseri
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 605 - 614