Operator Jensen inequality for superquadratic functions

被引:46
|
作者
Kian, Mohsen [1 ]
机构
[1] Univ Bojnord, Fac Basic Sci, Dept Math, Bojnord, Iran
关键词
Superquadratic function; Operator Jensen inequality; Convex function; Positive operator; Matrix inequality;
D O I
10.1016/j.laa.2012.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a Jensen operator inequality for superquadratic functions. In particular we extend the inequalityf (< Ax, x >) <= < f(A)x, x > for superquadratic functions and give some applications for our result. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 50 条
  • [21] Operator Popoviciu's inequality for superquadratic and convex functions of selfadjoint operators in Hilbert spaces
    Alomari, Mohammad W.
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (04) : 313 - 324
  • [22] ON A JENSEN-MERCER OPERATOR INEQUALITY
    Ivelic, S.
    Matkovic, A.
    Pecaric, J. E.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2011, 5 (01) : 19 - 28
  • [23] Operator inequalities reverse to the Jensen inequality
    Malamud, SM
    MATHEMATICAL NOTES, 2001, 69 (3-4) : 582 - 586
  • [24] CONVERSES OF JENSEN'S OPERATOR INEQUALITY
    Micic, Jadranka
    Pecaric, Josip
    Seo, Yuki
    OPERATORS AND MATRICES, 2010, 4 (03): : 385 - 403
  • [25] Operator Inequalities Reverse to the Jensen Inequality
    S. M. Malamud
    Mathematical Notes, 2001, 69 : 582 - 586
  • [26] Refinements of Jensen's inequality of Mercer's type for operator convex functions
    Matkovic, A.
    Pecaric, J.
    Peric, I.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (01): : 113 - 126
  • [27] Jensen-Steffensen's and related inequalities for superquadratic functions
    Abramovich, S.
    Banic, S.
    Matic, M.
    Pecaric, J.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (01): : 23 - 41
  • [28] A Refinement of Jensen's and Minkowski's Inequalities via Superquadratic Functions
    Asare-Tuah, Anton
    Prempeh, Edward
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2024, 2024
  • [29] Jensen's operator inequality and its converses
    Hansen, Frank
    Pecaric, Josip
    Peric, Ivan
    MATHEMATICA SCANDINAVICA, 2007, 100 (01) : 61 - 73
  • [30] On Reversing Operator Choi–Davis–Jensen Inequality
    Seyyed Saeid Hashemi Karouei
    Mohammad Sadegh Asgari
    Mohsen Shah Hosseini
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 1405 - 1410