A global compactness result for a critical nonlinear Choquard equation in RN

被引:0
|
作者
Huang, Wangcheng [1 ]
Long, Wei [1 ]
Xia, Aliang [1 ]
Zheng, Xiongjun [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang, Jiangxi, Peoples R China
来源
关键词
Global compactness; (PS) condition; Choquard equation; Existence results; NODAL SOLUTIONS; EXISTENCE; MULTIPLICITY; SYMMETRY;
D O I
10.1186/s13661-019-1223-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the following class of nonlinear Choquard equations: u + a(x) u = (| x|- mu * | u| 2 * mu)| u| 2 * mu- 2u + q(x)| u| p- 1u, x. RN, u. H1(RN), where 2 * mu = 2N- mu N- 2 is the critical exponent with N = 4 and 0 < mu < N, 1 < p < 2 * - 1 = N+ 2 N- 2, a(x) and q(x) satisfy some assumptions. Through a compactness analysis of the functional corresponding to the above problem, we obtain the existence of weak solutions for this problem under certain assumptions on a(x) and q(x).
引用
收藏
页数:16
相关论文
共 50 条
  • [41] On Fractional Choquard Equation with Subcritical or Critical Nonlinearities
    Zi-an Fan
    Mediterranean Journal of Mathematics, 2021, 18
  • [42] Nonlinear perturbations of a p(x)-Laplacian equation with critical growth in RN
    Alves, Claudianor O.
    Ferreira, Marcelo C.
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 849 - 868
  • [43] A NONEXISTENCE RESULT FOR A NONLINEAR EQUATION INVOLVING CRITICAL SOBOLEV EXPONENT
    RODRIGUEZ, AC
    COMTE, M
    LEWANDOWSKI, R
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (03): : 243 - 261
  • [44] Multiple solutions to a magnetic nonlinear Choquard equation
    Cingolani, Silvia
    Clapp, Monica
    Secchi, Simone
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (02): : 233 - 248
  • [45] A GLOBAL MULTIPLICITY RESULT FOR A VERY SINGULAR CRITICAL NONLOCAL EQUATION
    Giacomoni, Jacques
    Mukherjee, Tuhina
    Sreenadh, Konijeti
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) : 345 - 370
  • [46] THE SEMIRELATIVISTIC CHOQUARD EQUATION WITH A LOCAL NONLINEAR TERM
    Bieganowski, Bartosz
    Secchi, Simone
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (07) : 4279 - 4302
  • [47] Multiple solutions to a magnetic nonlinear Choquard equation
    Silvia Cingolani
    Mónica Clapp
    Simone Secchi
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 233 - 248
  • [48] A compactness result for polyharmonic maps in the critical dimension
    Shenzhou Zheng
    Czechoslovak Mathematical Journal, 2016, 66 : 137 - 150
  • [49] A compactness result for polyharmonic maps in the critical dimension
    Zheng, Shenzhou
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (01) : 137 - 150
  • [50] A compactness result for inhomogeneous nonlinear Schrodinger equations
    Van Duong Dinh
    Keraani, Sahbi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 215