Multiple solutions to a magnetic nonlinear Choquard equation

被引:200
|
作者
Cingolani, Silvia [1 ]
Clapp, Monica [2 ]
Secchi, Simone [3 ]
机构
[1] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, I-20125 Milan, Italy
来源
关键词
Nonlinear Choquard equation; Nonlocal nonlinearity; Electromagnetic potential; Multiple solutions; Intertwining solutions; SCHRODINGER-NEWTON EQUATIONS; STATE REDUCTION; EXISTENCE; PRINCIPLE; SYSTEMS;
D O I
10.1007/s00033-011-0166-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stationary nonlinear magnetic Choquard equation (-i del + A(x))(2)u + V(x)u = (1/|x|(alpha) * |u|(p-2)u, x is an element of R-N where A is a real-valued vector potential, V is a real-valued scalar potential, N >= 3, alpha is an element of (0, N) and 2 - (alpha/N) < p < (2N - alpha)/(N - 2). We assume that both A and V are compatible with the action of some group G of linear isometries of RN. We establish the existence of multiple complex valued solutions to this equation which satisfy the symmetry condition. u(gx) = tau(g)u(x) for all g is an element of G, x is an element of R-N, where tau : G -> S-1 is a given group homomorphism into the unit complex numbers.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 50 条
  • [1] Multiple solutions to a magnetic nonlinear Choquard equation
    Silvia Cingolani
    Mónica Clapp
    Simone Secchi
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 233 - 248
  • [2] Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    Yang, Minbo
    ASYMPTOTIC ANALYSIS, 2016, 96 (02) : 135 - 159
  • [3] Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities
    Silvia Cingolani
    Marco Gallo
    Kazunaga Tanaka
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [4] Vortex-type solutions to a magnetic nonlinear Choquard equation
    Salazar, Dora
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 663 - 675
  • [5] Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities
    Cingolani, Silvia
    Gallo, Marco
    Tanaka, Kazunaga
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (02)
  • [6] Multiple solutions of the Choquard equation
    Zhang, XJ
    DIFFERENTIAL EQUATIONS AND CONTROL THEORY, 1996, 176 : 477 - 482
  • [7] Vortex-type solutions to a magnetic nonlinear Choquard equation
    Dora Salazar
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 663 - 675
  • [8] On Nodal Solutions of the Nonlinear Choquard Equation
    Gui, Changfeng
    Guo, Hui
    ADVANCED NONLINEAR STUDIES, 2019, 19 (04) : 677 - 691
  • [9] Multiple solutions of the quasirelativistic Choquard equation
    Melgaard, M.
    Zongo, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (03)
  • [10] Existence and Concentration of Solutions for a Nonlinear Choquard Equation
    Lu, Dengfeng
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 839 - 850