Lagrange Dual Method for Sparsity Constrained Optimization

被引:7
|
作者
Zhu, Wenxing [1 ]
Dong, Zhengshan [1 ]
Yu, Yuanlong [1 ]
Chen, Jianli [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math & Theoret Comp Sci, Fuzhou 350108, Fujian, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国国家自然科学基金;
关键词
Sparse optimization; Lagrangian method; iterative hard thresholding method; compressed sensing; sparse logistic regression; SIGNAL RECOVERY; RECONSTRUCTION;
D O I
10.1109/ACCESS.2018.2836925
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the l(0) quasi-norm constrained optimization problem in the Lagrange dual framework and show that the strong duality property holds. Motivated by the property, we propose a Lagrange dual method for the sparsity constrained optimization problem. The method adopts the bisection search technique to maximize the Lagrange dual function. For each Lagrange multiplier, we adopt the iterative hard thresholding method to minimize the Lagrange function. We show that the proposed method converges to an L-stationary point of the primal problem. Computational experiments and comparisons on a number of test instances (including random compressed sensing instances and random and real sparse logistic regression instances) demonstrate the effectiveness of the proposed method in generating sparse solution accurately.
引用
收藏
页码:28404 / 28416
页数:13
相关论文
共 50 条
  • [31] Nonsmooth sparsity constrained optimization problems: optimality conditions
    Movahedian, N.
    Nobakhtian, S.
    Sarabadan, M.
    OPTIMIZATION LETTERS, 2019, 13 (05) : 1027 - 1038
  • [32] SPARSITY CONSTRAINED NONLINEAR OPTIMIZATION: OPTIMALITY CONDITIONS AND ALGORITHMS
    Beck, Amir
    Eldar, Yonina C.
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (03) : 1480 - 1509
  • [33] Sparsity constrained optimization problems via disjunctive programming
    Movahedian, N.
    Nobakhtian, S.
    Sarabadan, M.
    OPTIMIZATION, 2022, 71 (10) : 2979 - 3005
  • [34] Gradient projection Newton pursuit for sparsity constrained optimization
    Zhou S.
    Applied and Computational Harmonic Analysis, 2022, 61 : 75 - 100
  • [35] Distributed sparsity constrained optimization over the Stiefel manifold
    Qu, Wentao
    Chen, Huangyue
    Xiu, Xianchao
    Liu, Wanquan
    NEUROCOMPUTING, 2024, 602
  • [36] 91.06 On the Lagrange method for constrained critical points
    Scott, J. A.
    MATHEMATICAL GAZETTE, 2007, 91 (520): : 81 - +
  • [37] Lagrange multipliers with optimal sensitivity properties in constrained optimization
    Bertsekas, DP
    Large-Scale Nonlinear Optimization, 2006, 83 : 15 - 23
  • [38] Inexactness issues in the Lagrange-Newton-Krylov-Schur method for PDE-constrained optimization
    Biros, G
    Ghattas, O
    LARGE-SCALE PDE-CONSTRAINED OPTIMIZATION, 2003, 30 : 93 - 114
  • [40] Accelerated Projected Gradient Algorithms for Sparsity Constrained Optimization Problems
    Alcantara, Jan Harold
    Lee, Ching-pei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,