Lagrange Dual Method for Sparsity Constrained Optimization

被引:7
|
作者
Zhu, Wenxing [1 ]
Dong, Zhengshan [1 ]
Yu, Yuanlong [1 ]
Chen, Jianli [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math & Theoret Comp Sci, Fuzhou 350108, Fujian, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国国家自然科学基金;
关键词
Sparse optimization; Lagrangian method; iterative hard thresholding method; compressed sensing; sparse logistic regression; SIGNAL RECOVERY; RECONSTRUCTION;
D O I
10.1109/ACCESS.2018.2836925
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the l(0) quasi-norm constrained optimization problem in the Lagrange dual framework and show that the strong duality property holds. Motivated by the property, we propose a Lagrange dual method for the sparsity constrained optimization problem. The method adopts the bisection search technique to maximize the Lagrange dual function. For each Lagrange multiplier, we adopt the iterative hard thresholding method to minimize the Lagrange function. We show that the proposed method converges to an L-stationary point of the primal problem. Computational experiments and comparisons on a number of test instances (including random compressed sensing instances and random and real sparse logistic regression instances) demonstrate the effectiveness of the proposed method in generating sparse solution accurately.
引用
收藏
页码:28404 / 28416
页数:13
相关论文
共 50 条
  • [21] Dual-Modal Fast Photoacoustic/Ultrasound Localization Imaging with Sparsity-Constrained Optimization
    Zhao, Shensheng
    Paul, Souradip
    Yi, Junxi
    Chen, Yun-Sheng
    BIO-PROTOCOL, 2025, 15 (06):
  • [22] A DUAL METHOD FOR CONSTRAINED OPTIMIZATION DESIGN IN MAGNETOSTATIC PROBLEMS
    SALDANHA, RR
    COULOMB, JL
    FOGGIA, A
    SABONNADIERE, JC
    IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (05) : 4136 - 4141
  • [23] Pseudonormality and a Lagrange multiplier theory for constrained optimization
    Bertsekas, DP
    Ozdaglar, AE
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 114 (02) : 287 - 343
  • [24] Pseudonormality and a Lagrange Multiplier Theory for Constrained Optimization
    D.P. Bertsekas
    A.E. Ozdaglar
    Journal of Optimization Theory and Applications, 2002, 114 : 287 - 343
  • [25] Lagrange-Type Functions in Constrained Optimization
    A. M. Rubinov
    X. Q. Yang
    A. M. Bagirov
    R. N. Gasimov
    Journal of Mathematical Sciences, 2003, 115 (4) : 2437 - 2505
  • [26] A DUAL SPARSITY CONSTRAINED APPROACH FOR HYPERSPECTRAL TARGET DETECTION
    Shen, Dunbin
    Ma, Xiaorui
    Wang, Hongyu
    Liu, Jianjun
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1963 - 1966
  • [27] Iterative-Weighted Thresholding Method for Group-Sparsity-Constrained Optimization With Applications
    Jiang, Lanfan
    Huang, Zilin
    Chen, Yu
    Zhu, Wenxing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [28] The 2-factor-method with a modified Lagrange function for degenerate constrained optimization problems
    O. A. Brezhneva
    Yu. G. Evtushenko
    A. A. Tret’yakov
    Doklady Mathematics, 2006, 73 : 384 - 387
  • [29] The 2-factor-method with a modified Lagrange function for degenerate constrained optimization problems
    Brezhneva, O. A.
    Evtushenko, Yu. G.
    Tret'yakov, A. A.
    DOKLADY MATHEMATICS, 2006, 73 (03) : 384 - 387
  • [30] Nonsmooth sparsity constrained optimization problems: optimality conditions
    N. Movahedian
    S. Nobakhtian
    M. Sarabadan
    Optimization Letters, 2019, 13 : 1027 - 1038