Lagrange Dual Method for Sparsity Constrained Optimization

被引:7
|
作者
Zhu, Wenxing [1 ]
Dong, Zhengshan [1 ]
Yu, Yuanlong [1 ]
Chen, Jianli [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math & Theoret Comp Sci, Fuzhou 350108, Fujian, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国国家自然科学基金;
关键词
Sparse optimization; Lagrangian method; iterative hard thresholding method; compressed sensing; sparse logistic regression; SIGNAL RECOVERY; RECONSTRUCTION;
D O I
10.1109/ACCESS.2018.2836925
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the l(0) quasi-norm constrained optimization problem in the Lagrange dual framework and show that the strong duality property holds. Motivated by the property, we propose a Lagrange dual method for the sparsity constrained optimization problem. The method adopts the bisection search technique to maximize the Lagrange dual function. For each Lagrange multiplier, we adopt the iterative hard thresholding method to minimize the Lagrange function. We show that the proposed method converges to an L-stationary point of the primal problem. Computational experiments and comparisons on a number of test instances (including random compressed sensing instances and random and real sparse logistic regression instances) demonstrate the effectiveness of the proposed method in generating sparse solution accurately.
引用
收藏
页码:28404 / 28416
页数:13
相关论文
共 50 条
  • [1] A Lagrange penalty reformulation method for constrained optimization
    Rubinov, A. M.
    Yang, X. Q.
    Zhou, Y. Y.
    OPTIMIZATION LETTERS, 2007, 1 (02) : 145 - 154
  • [2] A Lagrange penalty reformulation method for constrained optimization
    A. M. Rubinov
    X. Q. Yang
    Y. Y. Zhou
    Optimization Letters, 2007, 1 : 145 - 154
  • [3] Dual formulation of the sparsity constrained optimization problem: application to classification
    Gaudioso, M.
    Giallombardo, G.
    Hiriart-Urruty, J. -B.
    OPTIMIZATION METHODS & SOFTWARE, 2024, 40 (01): : 84 - 101
  • [4] Weighted thresholding homotopy method for sparsity constrained optimization
    Zhu, Wenxing
    Huang, Huating
    Jiang, Lanfan
    Chen, Jianli
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (03) : 1924 - 1952
  • [5] Weighted thresholding homotopy method for sparsity constrained optimization
    Wenxing Zhu
    Huating Huang
    Lanfan Jiang
    Jianli Chen
    Journal of Combinatorial Optimization, 2022, 44 : 1924 - 1952
  • [6] Multiple Lagrange Multiplier Method for Constrained Evolutionary Optimization
    Myung, Hyun
    Kim, Jong-Hwan
    Journal of Advanced Computational Intelligence and Intelligent Informatics, 2000, 4 (02) : 158 - 163
  • [7] Multiple Lagrange multiplier method for constrained evolutionary optimization
    Myung, H
    Kim, JH
    SIMULATED EVOLUTION AND LEARNING, 1999, 1585 : 2 - 9
  • [8] On Solutions of Sparsity Constrained Optimization
    Pan L.-L.
    Xiu N.-H.
    Zhou S.-L.
    Journal of the Operations Research Society of China, 2015, 3 (4) : 421 - 439
  • [9] The Analysis of Alternating Minimization Method for Double Sparsity Constrained Optimization Problem
    Gao, Huan
    Li, Yingyi
    Zhang, Haibin
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2020, 37 (04)
  • [10] Greedy sparsity-constrained optimization
    Bahmani, Sohail
    Raj, Bhiksha
    Boufounos, Petros T.
    Journal of Machine Learning Research, 2013, 14 (01) : 807 - 841