Soliton-antisoliton collision in the ultradiscrete modified KdV equation

被引:6
|
作者
Isojima, S.
Murata, M.
Nobe, A.
Satsuma, J.
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
[2] Osaka Univ, Dept Engn Sci, Fac Informat Sci, Toyonaka, Osaka 5608531, Japan
[3] Aoyama Gakuin Univ, Dept Math & Phys, Coll Sci & Engn, Sagamihara, Kanagawa 2298558, Japan
关键词
integrable systems; soliton; discrete; cellular automaton; modified KdV equation;
D O I
10.1016/j.physleta.2006.04.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The discrete modified Korteweg-de Vries equation admits exact solutions with nondefinite sign, which describe interaction among solitons with positive and negative amplitude. In this Letter a transformation of hyperbolic sine type is proposed in order to ultradiscretize this equation and solutions. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 50 条
  • [21] WEAK-BOUNDED SOLITON-ANTISOLITON STATES IN THE DYNAMICS OF A ONE-AXIS FERROMAGNET
    BOROVIK, AE
    KLAMA, S
    KULINICH, SI
    PHYSICS LETTERS A, 1987, 120 (09) : 455 - 458
  • [22] Discrete and ultradiscrete Backlund transformation for KdV equation
    Isojima, S.
    Kubo, S.
    Murata, M.
    Satsuma, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (02)
  • [23] Soliton-antisoliton scattering configurations in a noncommutative sigma model in 2+1 dimensions
    Wolf, M
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (06):
  • [24] SOLITON AND ANTISOLITON INTERACTIONS IN THE GOOD BOUSSINESQ EQUATION
    MANORANJAN, VS
    ORTEGA, T
    SANZSERNA, JM
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (09) : 1964 - 1968
  • [25] Perturbed soliton solutions for an integral modified KdV equation
    Saravanan, M.
    Herman, Russell L.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 91
  • [26] ENERGY-FLOW DURING THE SOLITON-ANTISOLITON INTERACTION IN EXTENDED KLEIN-GORDON SYSTEMS
    TATENO, H
    PHYSICAL REVIEW B, 1988, 37 (13): : 7888 - 7891
  • [27] SOLITON-ANTISOLITON ANNIHILATION IN 1 + 1 DIMENSIONS - TIME-DEPENDENT HARTREE APPROACH
    GOLLI, B
    WEISE, W
    PHYSICAL REVIEW D, 1988, 37 (08) : 2257 - 2268
  • [28] STABILITY OF SPACE STRUCTURES AND SOLITON-ANTISOLITON PAIR ANNIHILATION IN THE DISCRETE PHI-4-MODEL
    BELOSHAPKIN, VV
    BERMAN, GP
    TRETYAKOV, AG
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1989, 95 (02): : 723 - 731
  • [29] Soliton-antisoliton collisions during phase transitions in thin films of oxygen-containing polymers
    Shikhovtseva, ES
    Ponomarev, OA
    JETP LETTERS, 1997, 66 (01) : 31 - 36
  • [30] Conserved quantities and generalized solutions of the ultradiscrete KdV equation
    Kanki, Masataka
    Mada, Jun
    Tokihiro, Tetsuji
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (14)