Electrochemical noise study on 2024-T3 Aluminum alloy corrosion in simulated acid rain under cyclic wet-dry condition

被引:87
|
作者
Shi, Yanyan
Zhang, Zhao
Su, Jingxin
Cao, Fahe
Zhang, Jianqing
机构
[1] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, State Key Lab Corros & Protect Met, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
2024-T3 Aluminum alloy; atmospheric corrosion; wet-dry cycle; simulated acid rain; electrochemical noise (EN);
D O I
10.1016/j.electacta.2006.01.050
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Potential noise records have been collected for 2024-T3 aluminum alloy, which was exposed to simulated acid rain with different pH value for 15 wet-dry cycles. Meanwhile, Potentiodynamic polarization and SEM techniques were also used as assistant measurements. Three mathematic methods including average, standard deviation and wavelet transformation have been employed to analyze the records. The results showed that each single wet-dry cycle can be divided into three regions with respect to the change of the cathodic reaction rate, and with the increase of pH value the main cathodic reaction changes from the reduction of protons to that of oxygen molecules. The analysis of the EDP versus time evolution clearly indicates that the whole corrosion process can be divided into three segments for the case of pH 3.5 and only one for the cases of pH 4.5 and 6.0, which have been theoretically interpreted according to the corrosion theory and experimentally proved by SEM. The results also showed that the corrosion in the case of pH 3.5 was much more rigorous than that in the cases of pH 4.5 and 6.0. It may due to synergistic effects of that, the characteristic of hydrogen ions which is much more active than that of oxygen molecules, the high diffusion/migration rate of hydrogen ions in solution or through surface films and the lower stability of surface passive film at low pH value system. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4977 / 4986
页数:10
相关论文
共 50 条
  • [21] Corrosion Inhibition of Aluminum Alloy 2024-T3 by Sodium Molybdate
    Lopez-Garrity, O.
    Frankel, G. S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) : C95 - C106
  • [22] Corrosion protection of aluminum alloy 2024-T3 by multilayers of polyaniline
    Huerta, D
    de Moraes, SR
    Motheo, AJ
    CORROSION AND CORROSION PROTECTION, 2001, 2001 (22): : 611 - 617
  • [23] Thiophene derivatives as corrosion inhibitors for 2024-T3 aluminum alloy in hydrochloric acid medium
    Arrousse, N.
    Fernine, Y.
    Al-Zaqri, Nabil
    Boshaala, Ahmed
    Ech-chihbi, E.
    Salim, R.
    El Hajjaji, F.
    Alami, Anouar
    Touhami, M. Ebn
    Taleb, M.
    RSC ADVANCES, 2022, 12 (17) : 10321 - 10335
  • [24] The influence of wet air on fatigue performance of 2024-T3 aluminum alloy
    Bao, Rui
    Zhang, Jianyu
    Fei, Binjun
    Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2007, 21 (05): : 547 - 550
  • [25] Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition
    Thee, Ch.
    Hao, Long
    Dong, Junhua
    Mu, Xin
    Wei, Xin
    Li, Xiaofang
    Ke, Wei
    CORROSION SCIENCE, 2014, 78 : 130 - 137
  • [26] Corrosion resistance properties of Ormosil coatings on 2024-T3 aluminum alloy
    Metroke, TL
    Gandhi, JS
    Apblett, A
    PROGRESS IN ORGANIC COATINGS, 2004, 50 (04) : 231 - 246
  • [27] Corrosion inhibition of aluminum alloy 2024-T3 by aqueous vanadium species
    Ralston, K. D.
    Chrisanti, S.
    Young, T. L.
    Buchheit, R. G.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (07) : C350 - C359
  • [28] Corrosion protection of aluminum alloy 2024-T3 by vanadate conversion coatings
    Guan, H
    Buchheit, RG
    CORROSION, 2004, 60 (03) : 284 - 296
  • [29] A study on pitting corrosion of aluminum alloy 2024-T3 by scanning microreference electrode technique
    Shao, MH
    Fu, Y
    Hu, RG
    Lin, CJ
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 344 (1-2): : 323 - 327
  • [30] Corrosion-fatigue behavior of welded aluminum alloy 2024-T3
    Yadav, V. K.
    Gaur, V.
    Singh, I. V.
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 173