The simplex gradient and noisy optimization problems

被引:0
|
作者
Bortz, DM [1 ]
Kelley, CT [1 ]
机构
[1] N Carolina State Univ, Dept Math, Ctr Res Sci Computat, Raleigh, NC 27695 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many classes of methods for noisy optimization problems are based on function information computed on sequences of simplices. The Nelder-Mead, multidirectional search, and implicit filtering methods are three such methods. The performance of these methods can be explained in terms of the difference approximation of the gradient implicit in the function evaluations. Insight can be gained into choice of termination criteria, detection of failure, and design of new methods.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 50 条
  • [31] Swarm algorithms with chaotic jumps applied to noisy optimization problems
    Mendel, Eduardo
    Krohling, Renato A.
    Campos, Mauro
    INFORMATION SCIENCES, 2011, 181 (20) : 4494 - 4514
  • [32] Improved differential evolution algorithms for handling noisy optimization problems
    Das, S
    Konar, A
    Chakraborty, UK
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 1691 - 1698
  • [33] Noisy Immune Optimization for Chance-constrained Programming Problems
    Zhang Zhu-hong
    MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, PTS 1 AND 2, 2011, 48-49 : 740 - 744
  • [34] Opposition-based Differential Evolution for optimization of noisy problems
    Rahnamayan, Shahryar
    Tizhoosh, Hamid R.
    Salama, Magdy M. A.
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 1850 - +
  • [35] A hierarchical evolutionary algorithm with noisy fitness in structural optimization problems
    Neri, F
    Kononova, AV
    Delvecchio, G
    Labini, MS
    Uglanov, AV
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2005, 3449 : 610 - 616
  • [36] Uncertainty Feature Optimization: An Implicit Paradigm for Problems with Noisy Data
    Eggenberg, Niklaus
    Salani, Matted
    Bierlaire, Michel
    NETWORKS, 2011, 57 (03) : 270 - 284
  • [37] Noisy chaotic neural networks for solving combinatorial optimization problems
    Wang, LP
    Tian, FY
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL IV, 2000, : 37 - 40
  • [38] Localization for Solving Noisy Multi-Objective Optimization Problems
    Bui, Lam T.
    Abbass, Hussein A.
    Essam, Daryl
    EVOLUTIONARY COMPUTATION, 2009, 17 (03) : 379 - 409
  • [39] Gradient methods for nonstationary unconstrained optimization problems
    Popkov, AY
    AUTOMATION AND REMOTE CONTROL, 2005, 66 (06) : 883 - 891
  • [40] A Descent Conjugate Gradient Method for Optimization Problems
    Semiu, Ayinde
    Idowu, Osinuga
    Adesina, Adio
    Sunday, Agboola
    Joseph, Adelodun
    Uchenna, Uka
    Olufisayo, Awe
    IAENG International Journal of Applied Mathematics, 2024, 54 (09) : 1765 - 1775