The simplex gradient and noisy optimization problems

被引:0
|
作者
Bortz, DM [1 ]
Kelley, CT [1 ]
机构
[1] N Carolina State Univ, Dept Math, Ctr Res Sci Computat, Raleigh, NC 27695 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many classes of methods for noisy optimization problems are based on function information computed on sequences of simplices. The Nelder-Mead, multidirectional search, and implicit filtering methods are three such methods. The performance of these methods can be explained in terms of the difference approximation of the gradient implicit in the function evaluations. Insight can be gained into choice of termination criteria, detection of failure, and design of new methods.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 50 条
  • [21] Noisy optimization problems - A particular challenge for differential evolution?
    Krink, T
    Filipic, B
    Fogel, GB
    Thomsen, R
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 332 - 339
  • [22] Quasi-Gradient Nonlinear Simplex Optimization Method in Electromagnetics
    Afsari, Arman
    Abbosh, Amin
    Rahmat-Samii, Yahya
    IEEE ACCESS, 2023, 11 : 59599 - 59611
  • [23] A Stochastic Simplex Approximate Gradient (StoSAG) for optimization under uncertainty
    Fonseca, Rahul Rahul-Mark
    Chen, Bailian
    Jansen, Jan Dirk
    Reynolds, Albert
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (13) : 1756 - 1776
  • [24] An integral simplex algorithm for solving combinatorial optimization problems
    Thompson, GL
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 22 (03) : 351 - 367
  • [25] An Integral Simplex Algorithm for Solving Combinatorial Optimization Problems
    Gerald L. Thompson
    Computational Optimization and Applications, 2002, 22 : 351 - 367
  • [26] Population statistics for particle swarm optimization: Resampling methods in noisy optimization problems
    Rada-Vilela, Juan
    Johnston, Mark
    Zhang, Mengjie
    SWARM AND EVOLUTIONARY COMPUTATION, 2014, 17 : 37 - 59
  • [27] Population statistics for particle swarm optimization: Hybrid methods in noisy optimization problems
    Rada-Vilela, Juan
    Johnston, Mark
    Zhang, Mengjie
    SWARM AND EVOLUTIONARY COMPUTATION, 2015, 22 : 15 - 29
  • [28] A parametric simplex algorithm for linear vector optimization problems
    Rudloff, Birgit
    Ulus, Firdevs
    Vanderbei, Robert
    MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) : 213 - 242
  • [29] A parametric simplex algorithm for linear vector optimization problems
    Birgit Rudloff
    Firdevs Ulus
    Robert Vanderbei
    Mathematical Programming, 2017, 163 : 213 - 242
  • [30] Integrating Particle Swarm Optimization with Reinforcement Learning in Noisy Problems
    Piperagkas, Grigoris S.
    Georgoulas, George
    Parsopoulos, Kostas E.
    Stylios, Chrysostomos D.
    Likas, Aristidis C.
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2012, : 65 - 72