The simplex gradient and noisy optimization problems

被引:0
|
作者
Bortz, DM [1 ]
Kelley, CT [1 ]
机构
[1] N Carolina State Univ, Dept Math, Ctr Res Sci Computat, Raleigh, NC 27695 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many classes of methods for noisy optimization problems are based on function information computed on sequences of simplices. The Nelder-Mead, multidirectional search, and implicit filtering methods are three such methods. The performance of these methods can be explained in terms of the difference approximation of the gradient implicit in the function evaluations. Insight can be gained into choice of termination criteria, detection of failure, and design of new methods.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 50 条
  • [1] Leveraging Simplex Gradient Variance and Bias Reduction for Black-Box Optimization of Noisy and Costly Functions
    Radac, Mircea-Bogdan
    Nicolae, Titus
    IEEE ACCESS, 2025, 13 : 14304 - 14316
  • [2] Optimization using the gradient and simplex methods
    Cerda, Victor
    Cerda, Juan Luis
    Idris, Abubakr M.
    TALANTA, 2016, 148 : 641 - 648
  • [3] A gradient method for unconstrained optimization in noisy environment
    Krejic, Natasa
    Luzanin, Zorana
    Stojkovska, Irena
    APPLIED NUMERICAL MATHEMATICS, 2013, 70 : 1 - 21
  • [4] Personalized Bayesian optimization for noisy problems
    Wang, Xilu
    Jin, Yaochu
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (05) : 5745 - 5760
  • [5] Personalized Bayesian optimization for noisy problems
    Xilu Wang
    Yaochu Jin
    Complex & Intelligent Systems, 2023, 9 : 5745 - 5760
  • [6] ON THE PRIVACY OF NOISY STOCHASTIC GRADIENT DESCENT FOR CONVEX OPTIMIZATION
    Altschuler, Jason M.
    Bok, Jinho
    Talwar, Kunal
    SIAM JOURNAL ON COMPUTING, 2024, 53 (04) : 969 - 1001
  • [7] (Bandit) Convex Optimization with Biased Noisy Gradient Oracles
    Hu, Xiaowei
    Prashanth, L. A.
    Gyorgy, Andras
    Szepesvari, Csaba
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 819 - 828
  • [8] Gradient optimization for object detection in learning with noisy labels
    Xia, Qiangqiang
    Hu, Chunyan
    Lee, Feifei
    Chen, Qiu
    APPLIED INTELLIGENCE, 2024, 54 (05) : 4248 - 4259
  • [9] Gradient optimization for object detection in learning with noisy labels
    Qiangqiang Xia
    Chunyan Hu
    Feifei Lee
    Qiu Chen
    Applied Intelligence, 2024, 54 : 4248 - 4259
  • [10] Application of the UCT Algorithm for Noisy Optimization Problems
    Notsu, Akira
    Kane, Satoshi
    Ubukata, Seiki
    Honda, Katsuhiro
    2016 JOINT 8TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 17TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2016, : 48 - +