Calibration Tools for Scanning Thermal Microscopy Probes Used in Temperature Measurement Mode

被引:6
|
作者
Nguyen, T. P. [1 ]
Thiery, L. [1 ]
Euphrasie, S. [1 ]
Lemaire, E. [2 ]
Khan, S. [2 ]
Briand, D. [2 ]
Aigouy, L. [3 ,4 ]
Gomes, S. [5 ]
Vairac, P. [1 ]
机构
[1] Univ Franche Comte, CNRS, ENSMM, UTBM,FEMTO ST Inst,UMR 6174, F-25030 Besancon, France
[2] Ecole Polytech Fed Lausanne, Soft Transducers Lab, CH-2002 Neuchatel, Switzerland
[3] ESPCI Paris, LPEM, F-75005 Paris, France
[4] Sorbonne Univ, PSL Res Univ, CNRS, F-75006 Paris, France
[5] Univ Claude Bernard Lyon 1, INSA Lyon, CNRS, Univ Lyon,CETHIL,UMR5008, F-69621 Villeurbanne, France
来源
关键词
scanning thermal microscopy; temperature measurement; calibration; microhotplate; NANOSCALE THERMOMETRY; HEAT-TRANSFER; CONTACT;
D O I
10.1115/1.4043381
中图分类号
O414.1 [热力学];
学科分类号
摘要
We demonstrate the functionality of a new active thermal microchip dedicated to the temperature calibration of scanning thermal microscopy (SThM) probes. The silicon micro-machined device consists in a suspended thin dielectric membrane in which a heating resistor with a circular area of 50 mu m in diameter was embedded. A circular calibration target of 10 mu m in diameter was patterned at the center and on top of the membrane on which the SThM probe can land. This target is a resistive temperature detector (RTD) that measures the surface temperature of the sample at the level of the contact area. This allows evaluating the ability of any SThM probe to measure a surface temperature in ambient air conditions. Furthermore, by looking at the thermal balance of the device, the heat dissipated through the probe and the different thermal resistances involved at the contact can be estimated. A comparison of the results obtained for two different SThM probes, microthermocouples and probes with a fluorescent particle is presented to validate the functionality of the micromachined device. Based on experiments and simulations, an analysis of the behavior of probes allows pointing out their performances and limits depending on the sample characteristics whose role is always preponderant. Finally, we also show that a smaller area of the temperature sensor would be required to assess the local disturbance at the contact point.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Photothermal Measurement by the Use of Scanning Thermal Microscopy
    Bodzenta, Jerzy
    Juszczyk, Justyna
    Kazmierczak-Balata, Anna
    Wielgoszewski, Grzegorz
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2014, 35 (12) : 2316 - 2327
  • [22] Quantitative thermal measurement by the use of scanning thermal microscope and resistive thermal probes
    Bodzenta, Jerzy
    Kazmierczak-Balata, Anna
    Harris, Kurt
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (03)
  • [23] The effect of the contact point asymmetry on the accuracy of thin films thermal conductivity measurement by scanning thermal microscopy using Wollaston probes
    Hapenciuc, C. L.
    Negut, I.
    Visan, A.
    Borca-Tasciuc, T.
    Mihailescu, I. N.
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (09)
  • [24] Thermal conductivity calibration for hot wire based dc scanning thermal microscopy
    Lefèvre, S
    Volz, S
    Saulnier, JB
    Fuentes, C
    Trannoy, N
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (04): : 2418 - 2423
  • [25] Comparison of thermoreflectance and scanning thermal microscopy for microelectronic device temperature variation imaging: Calibration and resolution issues
    Grauby, Stephane
    Salhi, Amine
    Lopez, Luis-David Patino
    Claeys, Wilfrid
    Charlot, Benoit
    Dilhaire, Stefan
    MICROELECTRONICS RELIABILITY, 2008, 48 (02) : 204 - 211
  • [26] Micromachined active test structure for scanning thermal microscopy probes characterization
    Janus, Pawel
    Sierakowski, Andrzej
    Grabiec, Piotr
    Rudek, Maciej
    Majstrzyk, Wojciech
    Gotszalk, Teodor
    MICROELECTRONIC ENGINEERING, 2017, 174 : 70 - 73
  • [27] Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes
    Tovee, Peter D.
    Pumarol, Manuel E.
    Rosamond, Mark C.
    Jones, Robert
    Petty, Michael C.
    Zeze, Dagou A.
    Kolosov, Oleg V.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (03) : 1174 - 1181
  • [28] DC scanning thermal microscopy: Characterisation and interpretation of the measurement
    Gomes, S
    Trannoy, N
    Grossel, P
    Depasse, F
    Bainier, C
    Charraut, D
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2001, 40 (11) : 949 - 958
  • [29] Reliable And Accurate Temperature Measurement Using Scanning Thermal Microscopy With Double Lock-In Amplification
    Ho, H. W.
    Zheng, X. H.
    Phang, J. C. H.
    Balk, L. J.
    2009 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, VOLS 1 AND 2, 2009, : 804 - +
  • [30] Quantifying the temperature of heated microdevices using scanning thermal probes
    Reihani, Amin
    Yan, Shen
    Luan, Yuxuan
    Mittapally, Rohith
    Meyhofer, Edgar
    Reddy, Pramod
    APPLIED PHYSICS LETTERS, 2021, 118 (16)