Experiencing PROV-Wf for Provenance Interoperability in SWfMSs

被引:0
|
作者
Oliveira, Wellington [1 ,2 ]
De Oliveira, Daniel [1 ]
Braganholo, Vanessa [1 ]
机构
[1] Univ Fed Fluminense, Inst Computacao, Niteroi, RJ, Brazil
[2] Inst Fed Educ Ciencia & Tecnol Sudeste Minas Gera, Dept Acad Ciencia Computacao, Juiz De Fora, Brazil
关键词
D O I
10.1007/978-3-319-16462-5_38
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Analyzing disperse and heterogeneous provenance data usually requires using higher-level tools which scientists need to learn. In our view, scientists should be able to analyze provenance in the SWfMS of their choice. In this paper, we propose Gefyra, an architecture based on the PROV-Wf model, which provides a way to capture heterogeneous provenance data from different SWfMSs into a single format. Gefyra exports and imports provenance data to/from different SWfMSs, allowing scientists to use the system of their choice.
引用
收藏
页码:294 / 296
页数:3
相关论文
共 50 条
  • [41] A Big Data Provenance Model for Data Security Supervision Based on PROV-DM Model
    Gao, Yuanzhao
    Chen, Xingyuan
    Du, Xuehui
    IEEE ACCESS, 2020, 8 : 38742 - 38752
  • [42] WIP: Prov-SE-O: A Provenance Ontology to Support Scientists in Scientific Experimentation Process
    Ambrosio, Lenita M.
    David, Jose Maria N.
    Braga, Regina
    Stroele, Victor
    Campos, Fernanda
    Araujo, Marco Antonio
    2017 IEEE/ACM 12TH INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING FOR SCIENCE (SE4SCIENCE), 2017, : 15 - 21
  • [43] P-PIF: a ProvONE provenance interoperability framework for analyzing heterogeneous workflow specifications and provenance traces
    Prabhune, Ajinkya
    Zweig, Aaron
    Stotzka, Rainer
    Hesser, Juergen
    Gertz, Michael
    DISTRIBUTED AND PARALLEL DATABASES, 2018, 36 (01) : 219 - 264
  • [44] P-PIF: a ProvONE provenance interoperability framework for analyzing heterogeneous workflow specifications and provenance traces
    Ajinkya Prabhune
    Aaron Zweig
    Rainer Stotzka
    Jürgen Hesser
    Michael Gertz
    Distributed and Parallel Databases, 2018, 36 : 219 - 264
  • [45] PROV2VEC: Learning Provenance Graph Representation for Anomaly Detection in Computer Systems
    Bhattarai, Bibek
    Huang, H. Howie
    19TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY, AND SECURITY, ARES 2024, 2024,
  • [46] PROV-IO+: A Cross-Platform Provenance Framework for Scientific Data on HPC Systems
    Han, Runzhou
    Zheng, Mai
    Byna, Suren
    Tang, Houjun
    Dong, Bin
    Dai, Dong
    Chen, Yong
    Kim, Dongkyun
    Hassoun, Joseph
    Thorsley, David
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (05) : 844 - 861
  • [47] W3C PROV to describe provenance at the dataset, feature and attribute levels in a distributed environment
    Closa, Guillem
    Maso, Joan
    Pross, Benjamin
    Pons, Xavier
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2017, 64 : 103 - 117
  • [48] Coupling OGC WPS and W3C PROV for provenance-aware geoprocessing workflows
    Zhang, Mingda
    Jiang, Liangcun
    Zhao, Jing
    Yue, Peng
    Zhang, Xuequan
    COMPUTERS & GEOSCIENCES, 2020, 138
  • [49] Advancing interoperability of geospatial data provenance on the web: Gap analysis and strategies
    Jiang, Liangcun
    Yue, Peng
    Kuhn, Werner
    Zhang, Chenxiao
    Yu, Changhui
    Guo, Xia
    COMPUTERS & GEOSCIENCES, 2018, 117 : 21 - 31
  • [50] GAP: Enhancing Semantic Interoperability of Genomic Datasets and Provenance Through Nanopublications
    Puime Feijoo, Matheus Pedra
    Jardim, Rodrigo
    Serra da Cruz, Sergio Manuel
    Machado Campos, Maria Luiza
    METADATA AND SEMANTIC RESEARCH, MTSR 2021, 2022, 1537 : 336 - 348