Experiencing PROV-Wf for Provenance Interoperability in SWfMSs

被引:0
|
作者
Oliveira, Wellington [1 ,2 ]
De Oliveira, Daniel [1 ]
Braganholo, Vanessa [1 ]
机构
[1] Univ Fed Fluminense, Inst Computacao, Niteroi, RJ, Brazil
[2] Inst Fed Educ Ciencia & Tecnol Sudeste Minas Gera, Dept Acad Ciencia Computacao, Juiz De Fora, Brazil
关键词
D O I
10.1007/978-3-319-16462-5_38
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Analyzing disperse and heterogeneous provenance data usually requires using higher-level tools which scientists need to learn. In our view, scientists should be able to analyze provenance in the SWfMS of their choice. In this paper, we propose Gefyra, an architecture based on the PROV-Wf model, which provides a way to capture heterogeneous provenance data from different SWfMSs into a single format. Gefyra exports and imports provenance data to/from different SWfMSs, allowing scientists to use the system of their choice.
引用
收藏
页码:294 / 296
页数:3
相关论文
共 50 条
  • [21] Towards a Data Space for Interoperability of Analytic Provenance
    Langer, Tristan
    Pomp, Andre
    Meisen, Tobias
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 1502 - 1503
  • [22] Special Section: The third provenance challenge on using the open provenance model for interoperability
    Simmhan, Yogesh
    Groth, Paul
    Moreau, Luc
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2011, 27 (06): : 737 - 742
  • [23] MLflow2PROV: Extracting Provenance from Machine Learning Experiments
    Schlegel, Marius
    Sattler, Kai-Uwe
    PROCEEDINGS OF THE SEVENTH WORKSHOP ON DATA MANAGEMENT FOR END-TO-END MACHINE LEARNING, DEEM, 2023,
  • [24] PROV-JSON']JSONLD: A JSON']JSON and Linked Data Representation for Provenance
    Trung Dong Huynh
    Michaelides, Danius T.
    Moreau, Luc
    Provenance and Annotation of Data and Processes, IPAW 2016, 2016, 9672 : 173 - 177
  • [25] Provenance Metadata of Open Government Data Based on PROV-JSON']JSON
    Zhai, Jun
    Chen, Hongyu
    Yuan, Changfeng
    DG.O 2017: THE PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH: INNOVATIONS AND TRANSFORMATIONS IN GOVERNMENT, 2017, : 594 - 595
  • [26] Automated and non-intrusive provenance capture with UML2PROV
    Saenz-Adan, Carlos
    Garcia-Izquierdo, Francisco J.
    Perez, Beatriz
    Huynh, Trung Dong
    Moreau, Luc
    COMPUTING, 2022, 104 (04) : 767 - 788
  • [27] PRov-GEM: Automated Provenance Analysis Framework using Graph Embeddings
    Kapoor, Maya
    Melton, Joshua
    Ridenhour, Michael
    Krishnan, Siddharth
    Moyer, Thomas
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1720 - 1727
  • [28] Prov2ONE: An Algorithm for Automatically Constructing ProvONE Provenance Graphs
    Prabhune, Ajinkya
    Zweig, Aaron
    Stotzka, Rainer
    Gertz, Michael
    Hesser, Juergen
    Provenance and Annotation of Data and Processes, IPAW 2016, 2016, 9672 : 204 - 208
  • [29] Integrating Provenance Capture and UML With UML2PROV: Principles and Experience
    Saenz-Adan, Carlos
    Perez, Beatriz
    Garcia-Izquierdo, Francisco J.
    Moreau, Luc
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2022, 48 (01) : 53 - 68
  • [30] Automated and non-intrusive provenance capture with UML2PROV
    Carlos Sáenz-Adán
    Francisco J. García-Izquierdo
    Beatriz Pérez
    Trung Dong Huynh
    Luc Moreau
    Computing, 2022, 104 : 767 - 788