Sharp power mean bounds for two Sandor-Yang means

被引:42
|
作者
He, Xiao-Hong [1 ]
Qian, Wei-Mao [2 ]
Xu, Hui-Zuo [3 ]
Chu, Yu-Ming [4 ]
机构
[1] Quzhou Broadcast & TV Univ, Off Acad Affairs, Quzhou 324000, Peoples R China
[2] Huzhou Vocat & Tech Coll, Sch Continuing Educ, Huzhou 313000, Zhejiang, Peoples R China
[3] Wenzhou Broadcast & TV Univ, Sch Econ & Management, Wenzhou 325000, Peoples R China
[4] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
基金
中国国家自然科学基金;
关键词
Geometric mean; Quadratic mean; Yang mean; Sandor-Yang mean; Power mean; TRANSFORMATION INEQUALITIES;
D O I
10.1007/s13398-019-00643-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the article, we prove that the double inequalities Ma(a, b) < Q(a, b) eG(a, b)/U(a, b)-1 < M beta(a, b), M.(a, b) < G(a, b) eQ(a, b)/V(a, b)-1 < M mu(a, b) hold for all a, b > 0 with a = b if and only if a = 2 log2/(2 + log 2) = 0.5147 center dot center dot center dot, beta = 2/3,. = 2 log2/(2 -log 2) = 1.0607 center dot center dot center dot and mu = 4/3, where Mp(a, b) = [(a p + bp)/2] 1/p (p = 0), M0(a, b) = G(a, b) = v ab, Q(a, b) = (a2 + b2)/2, U(a, b) = (a -b)/[ v 2. arctan((a -b)/v 2ab)] and V(a, b) = (a -b)/[ v 2 sinh -1((a -b)/v 2ab)] are respectively the pth power, geometric, quadratic, first Yang and second Yang means, and sinh -1(x) is the inverse hyperbolic sine function.
引用
收藏
页码:2627 / 2638
页数:12
相关论文
共 50 条
  • [1] SHARP BOUNDS FOR SANDOR-YANG MEANS IN TERMS OF QUADRATIC MEAN
    Xu, Hui-Zuo
    Qian, Wei-Mao
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 1149 - 1158
  • [2] Improvements of bounds for the Sandor-Yang means
    Qian, Wei-Mao
    Xu, Hui-Zuo
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [3] Sharp one-parameter geometric and quadratic means bounds for the Sandor-Yang means
    Wang, Bo
    Luo, Chen-Lan
    Li, Shi-Hui
    Chu, Yu-Ming
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [4] Sharp bounds for the Sandor-Yang means in terms of arithmetic and contra-harmonic means
    Xu, Hui-Zuo
    Chu, Yu-Ming
    Qian, Wei-Mao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [5] Sharp power-type Heronian mean bounds for the Sandor and Yang means
    Zhou, Shuang-Shuang
    Qian, Wei-Mao
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [6] SHARP BOUNDS FOR SANDOR-YANG MEANS IN TERMS OF ONE-PARAMETER FAMILY OF BIVARIATE MEANS
    Yang, Yue-Ying
    Qian, Wei-Mao
    Xu, Hui-Zuo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (04): : 1181 - 1196
  • [7] OPTIMAL EVALUATIONS FOR THE SANDOR-YANG MEAN BY POWER MEAN
    Yang, Zhen-Hang
    Chu, Yu-Ming
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03): : 1031 - 1038
  • [8] Optimal two-parameter geometric and arithmetic mean bounds for the Sandor-Yang mean
    Qian, Wei-Mao
    Yang, Yue-Ying
    Zhang, Hong-Wei
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [9] Sharp power mean bounds for two Sándor–Yang means
    Xiao-Hong He
    Wei-Mao Qian
    Hui-Zuo Xu
    Yu-Ming Chu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2627 - 2638
  • [10] Sharp bounds for the Neuman-Sandor mean in terms of the power and contraharmonic means
    Jiang, Wei-Dong
    Qi, Feng
    COGENT MATHEMATICS, 2015, 2