Sharp power mean bounds for two Sandor-Yang means

被引:42
|
作者
He, Xiao-Hong [1 ]
Qian, Wei-Mao [2 ]
Xu, Hui-Zuo [3 ]
Chu, Yu-Ming [4 ]
机构
[1] Quzhou Broadcast & TV Univ, Off Acad Affairs, Quzhou 324000, Peoples R China
[2] Huzhou Vocat & Tech Coll, Sch Continuing Educ, Huzhou 313000, Zhejiang, Peoples R China
[3] Wenzhou Broadcast & TV Univ, Sch Econ & Management, Wenzhou 325000, Peoples R China
[4] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
基金
中国国家自然科学基金;
关键词
Geometric mean; Quadratic mean; Yang mean; Sandor-Yang mean; Power mean; TRANSFORMATION INEQUALITIES;
D O I
10.1007/s13398-019-00643-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the article, we prove that the double inequalities Ma(a, b) < Q(a, b) eG(a, b)/U(a, b)-1 < M beta(a, b), M.(a, b) < G(a, b) eQ(a, b)/V(a, b)-1 < M mu(a, b) hold for all a, b > 0 with a = b if and only if a = 2 log2/(2 + log 2) = 0.5147 center dot center dot center dot, beta = 2/3,. = 2 log2/(2 -log 2) = 1.0607 center dot center dot center dot and mu = 4/3, where Mp(a, b) = [(a p + bp)/2] 1/p (p = 0), M0(a, b) = G(a, b) = v ab, Q(a, b) = (a2 + b2)/2, U(a, b) = (a -b)/[ v 2. arctan((a -b)/v 2ab)] and V(a, b) = (a -b)/[ v 2 sinh -1((a -b)/v 2ab)] are respectively the pth power, geometric, quadratic, first Yang and second Yang means, and sinh -1(x) is the inverse hyperbolic sine function.
引用
收藏
页码:2627 / 2638
页数:12
相关论文
共 50 条
  • [31] Sharp power mean bounds for Seiffert mean
    LI Yong-min
    WANG Miao-kun
    CHU Yu-ming
    Applied Mathematics:A Journal of Chinese Universities, 2014, (01) : 101 - 107
  • [32] Sharp power mean bounds for Seiffert mean
    Yong-min Li
    Miao-kun Wang
    Yu-ming Chu
    Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 101 - 107
  • [33] Sharp power mean bounds for Seiffert mean
    LI Yong-min
    WANG Miao-kun
    CHU Yu-ming
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2014, 29 (01) : 101 - 107
  • [34] Sharp Geometric Mean Bounds for Neuman Means
    Zhang, Yan
    Chu, Yu-Ming
    Jiang, Yun-Liang
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [35] Sharp bounds for Neuman-Sandor's mean in terms of the root-mean-square
    Jiang, Wei-Dong
    Qi, Feng
    PERIODICA MATHEMATICA HUNGARICA, 2014, 69 (02) : 134 - 138
  • [36] Sharp bounds for Heinz mean by Heron mean and other means
    Zhu, Ling
    AIMS MATHEMATICS, 2020, 5 (01): : 723 - 731
  • [37] Optimal power mean bounds for the second Yang mean
    Li, Jun-Feng
    Yang, Zhen-Hang
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 9
  • [38] Optimal power mean bounds for the second Yang mean
    Jun-Feng Li
    Zhen-Hang Yang
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2016
  • [39] OPTIMAL BOUNDS FOR THE SANDOR MEAN IN TERMS OF THE COMBINATION OF GEOMETRIC AND ARITHMETIC MEANS
    Qian, Wei-Mao
    Ma, Chun-Lin
    Xu, Hui-Zuo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 667 - 674
  • [40] SHARP POWER MEAN BOUNDS FOR THE SECOND NEUMAN MEAN
    He, Xiao-Hong
    Yang, Yue-Ying
    Qian, Wei-Mao
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (02) : 801 - 809