SHARP BOUNDS FOR SANDOR-YANG MEANS IN TERMS OF ONE-PARAMETER FAMILY OF BIVARIATE MEANS

被引:0
|
作者
Yang, Yue-Ying [1 ]
Qian, Wei-Mao [2 ]
Xu, Hui-Zuo [3 ]
机构
[1] Huzhou Vocat & Tech Coll, Sch Mech & Elect Engn, Huzhou 313000, Peoples R China
[2] Huzhou Broadcast & TV Univ, Sch Continuing Educ, Huzhou 31300, Peoples R China
[3] Wenzhou Broadcast & TV Univ, Sch Econ & Management, Wenzhou 325000, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2019年 / 13卷 / 04期
关键词
Sandor-Yang mean; one-parameter mean; harmonic mean; geometric mean; quadratic mean; contra-harmonic mean; SINGULAR INTEGRAL OPERATOR; NICHOLSONS BLOWFLIES MODEL; TRANSFORMATION INEQUALITIES; NEURAL-NETWORKS; LIMIT-CYCLES; COMMUTATOR; EXISTENCE; EQUATION; SYSTEMS; NUMBER;
D O I
10.7153/jmi-2019-13-84
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we present the best possible parameters alpha(1), alpha(2), alpha(3), alpha(4), beta(1), beta(2), beta(3) and beta(4) on the interval (0, 1) such that the double inequalities G(alpha 1)(x,y) < R-GQ(x,y) < G(beta 1)(x,y), Q(alpha 2)(x,y) < R-QG(x,y) < Q(beta 2)(x,y), H-alpha 3(x,y) < R-GQ(x,y) < H-beta 3(x,y), C-alpha 4(x,y) < R-QG(x,y) < C-beta 4(x,y) hold for all x,y > 0 with x not equal y, where R-GQ(x,y) and R-QG(x,y) arc the Sandor-Yang means, H-p(x,y), G(p) (x,y), Q(p)(x,y) and C-p(x,y) are the one-parameter means.
引用
收藏
页码:1181 / 1196
页数:16
相关论文
共 50 条
  • [1] Sharp one-parameter geometric and quadratic means bounds for the Sandor-Yang means
    Wang, Bo
    Luo, Chen-Lan
    Li, Shi-Hui
    Chu, Yu-Ming
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [2] Sharp bounds for Neuman means in terms of one-parameter family of bivariate means
    Zhi-Hua Shao
    Wei-Mao Qian
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2014
  • [3] Sharp bounds for Neuman means in terms of one-parameter family of bivariate means
    Shao, Zhi-Hua
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [4] SHARP BOUNDS FOR SANDOR-YANG MEANS IN TERMS OF QUADRATIC MEAN
    Xu, Hui-Zuo
    Qian, Wei-Mao
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 1149 - 1158
  • [5] Sharp bounds for the Sandor-Yang means in terms of arithmetic and contra-harmonic means
    Xu, Hui-Zuo
    Chu, Yu-Ming
    Qian, Wei-Mao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [6] Sharp power mean bounds for two Sandor-Yang means
    He, Xiao-Hong
    Qian, Wei-Mao
    Xu, Hui-Zuo
    Chu, Yu-Ming
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2627 - 2638
  • [7] Improvements of bounds for the Sandor-Yang means
    Qian, Wei-Mao
    Xu, Hui-Zuo
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [8] Sharp one-parameter geometric and quadratic means bounds for the Sándor–Yang means
    Bo Wang
    Chen-Lan Luo
    Shi-Hui Li
    Yu-Ming Chu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [9] On one-parameter family of bivariate means
    Neuman, Edward
    AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 191 - 197
  • [10] On one-parameter family of bivariate means
    Edward Neuman
    Aequationes mathematicae, 2012, 83 : 191 - 197