SHARP BOUNDS FOR SANDOR-YANG MEANS IN TERMS OF ONE-PARAMETER FAMILY OF BIVARIATE MEANS

被引:0
|
作者
Yang, Yue-Ying [1 ]
Qian, Wei-Mao [2 ]
Xu, Hui-Zuo [3 ]
机构
[1] Huzhou Vocat & Tech Coll, Sch Mech & Elect Engn, Huzhou 313000, Peoples R China
[2] Huzhou Broadcast & TV Univ, Sch Continuing Educ, Huzhou 31300, Peoples R China
[3] Wenzhou Broadcast & TV Univ, Sch Econ & Management, Wenzhou 325000, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2019年 / 13卷 / 04期
关键词
Sandor-Yang mean; one-parameter mean; harmonic mean; geometric mean; quadratic mean; contra-harmonic mean; SINGULAR INTEGRAL OPERATOR; NICHOLSONS BLOWFLIES MODEL; TRANSFORMATION INEQUALITIES; NEURAL-NETWORKS; LIMIT-CYCLES; COMMUTATOR; EXISTENCE; EQUATION; SYSTEMS; NUMBER;
D O I
10.7153/jmi-2019-13-84
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we present the best possible parameters alpha(1), alpha(2), alpha(3), alpha(4), beta(1), beta(2), beta(3) and beta(4) on the interval (0, 1) such that the double inequalities G(alpha 1)(x,y) < R-GQ(x,y) < G(beta 1)(x,y), Q(alpha 2)(x,y) < R-QG(x,y) < Q(beta 2)(x,y), H-alpha 3(x,y) < R-GQ(x,y) < H-beta 3(x,y), C-alpha 4(x,y) < R-QG(x,y) < C-beta 4(x,y) hold for all x,y > 0 with x not equal y, where R-GQ(x,y) and R-QG(x,y) arc the Sandor-Yang means, H-p(x,y), G(p) (x,y), Q(p)(x,y) and C-p(x,y) are the one-parameter means.
引用
收藏
页码:1181 / 1196
页数:16
相关论文
共 50 条
  • [41] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Zhen-Hang Yang
    Jing-Feng Tian
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [42] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Yang, Zhen-Hang
    Tian, Jing-Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [43] Sharp power mean bounds for two Sándor–Yang means
    Xiao-Hong He
    Wei-Mao Qian
    Hui-Zuo Xu
    Yu-Ming Chu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2627 - 2638
  • [45] BOUNDS FOR THE ARITHMETIC MEAN IN TERMS OF THE TOADER MEAN AND OTHER BIVARIATE MEANS
    Hua, Yun
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 203 - 210
  • [46] Bounds for the Neuman-Sandor Mean in Terms of the Arithmetic and Contra-Harmonic Means
    Li, Wen-Hui
    Miao, Peng
    Guo, Bai-Ni
    AXIOMS, 2022, 11 (05)
  • [47] Sharp bounds for Seiffert and Neuman-Sándor means in terms of generalized logarithmic means
    Yu-Ming Chu
    Bo-Yong Long
    Wei-Ming Gong
    Ying-Qing Song
    Journal of Inequalities and Applications, 2013
  • [48] Optimal bounds for the Neuman-Sandor mean in terms of the first Seiffert and quadratic means
    Gong, Wei-Ming
    Shen, Xu-Hui
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [49] Sharp Bounds for Toader Mean in terms of Arithmetic and Second Contraharmonic Means
    Qian, Wei-Mao
    Song, Ying-Qing
    Zhang, Xiao-Hui
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [50] Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means
    Li, Jun-Feng
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,