THE L2-TORSION POLYTOPE OF AMENABLE GROUPS

被引:0
|
作者
Funke, Florian [1 ]
机构
[1] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
来源
DOCUMENTA MATHEMATICA | 2018年 / 23卷
关键词
L-2-torsion polytope; amenable groups; polytope class; Atiyah Conjecture; 3-manifolds; L-2-ALEXANDER TORSION; THEOREM; FINITE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of groups of polytope class and show that torsion-free amenable groups satisfying the Atiyah Conjecture possess this property. A direct consequence is the homotopy invariance of the L-2-torsion polytope among G-CW-complexes for these groups. As another application we prove that the L-2-torsion polytope of an amenable group vanishes provided that it contains a non-abelian elementary amenable normal subgroup.
引用
收藏
页码:1969 / 1993
页数:25
相关论文
共 50 条
  • [21] Constructions of torsion-free countable, amenable, weakly mixing groups
    Grigorchuk, Rostislav
    Kravchenko, Rostyslav
    Olshanskii, Alexander
    ENSEIGNEMENT MATHEMATIQUE, 2015, 61 (3-4): : 321 - 342
  • [22] TORSION IN L-GROUPS
    CAPPELL, SE
    SHANESON, JL
    LECTURE NOTES IN MATHEMATICS, 1985, 1126 : 22 - 50
  • [23] AMENABLE TRANSFORMATION GROUPS .2.
    SAKAI, K
    PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (06): : 428 - 431
  • [24] On the L p -distortion of finite quotients of amenable groups
    Tessera, Romain
    POSITIVITY, 2012, 16 (04) : 633 - 640
  • [25] AMENABLE-GROUPS AND AMENABLE GRAPHS
    GERL, P
    LECTURE NOTES IN MATHEMATICS, 1988, 1359 : 181 - 190
  • [26] AMENABLE GROUPS AND VARIETIES OF GROUPS
    KELLER, G
    ILLINOIS JOURNAL OF MATHEMATICS, 1972, 16 (02) : 257 - &
  • [27] TORSION THEORY FOR LATTICE-ORDERED GROUPS .2. HOMOGENEOUS L-GROUPS
    MARTINEZ, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1976, 26 (01) : 93 - 100
  • [28] Lattices in amenable groups
    Bader, Uri
    Caprace, Pierre-Emmanuel
    Gelander, Tsachik
    Mozes, Shahar
    FUNDAMENTA MATHEMATICAE, 2019, 246 (03) : 217 - 255
  • [29] SUBSEMIGROUPS OF AMENABLE GROUPS
    HOCHSTER, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 21 (02) : 363 - &
  • [30] Amenable hyperbolic groups
    Caprace, Pierre-Emmanuel
    Cornulier, Yves
    Monod, Nicolas
    Tessera, Romain
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (11) : 2903 - 2947