Lattices in amenable groups

被引:9
|
作者
Bader, Uri [1 ]
Caprace, Pierre-Emmanuel [2 ]
Gelander, Tsachik [1 ]
Mozes, Shahar [3 ]
机构
[1] Weizmann Inst Sci, Fac Math & Comp Sci, IL-7610001 Rehovot, Israel
[2] Catholic Univ Louvain, Fac Sci, Ecole Math, B-1348 Louvain La Neuve, Belgium
[3] Hebrew Univ Jerusalem, Einstein Inst Math, IL-9190401 Jerusalem, Israel
基金
欧洲研究理事会;
关键词
lattices; discrete subgroups; amenable groups; SUBGROUPS;
D O I
10.4064/fm572-9-2018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact amenable group. We say that G has property (M) if every closed subgroup of finite covolume in G is cocompact. A classical theorem of Mostow ensures that connected solvable Lie groups have property (M). We prove a non-Archimedean extension of Mostow's theorem by showing that amenable linear locally compact groups have property (M). However property (M) does not hold for all solvable locally compact groups: indeed, we exhibit an example of a metabelian locally compact group with a non-uniform lattice. We show that compactly generated metabelian groups, and more generally nilpotent-by-nilpotent groups, do have property (M). Finally, we highlight a connection of property (M) with the subtle relation between the analytic notions of strong ergodicity and the spectral gap.
引用
收藏
页码:217 / 255
页数:39
相关论文
共 50 条
  • [1] AMENABLE-GROUPS AND AMENABLE GRAPHS
    GERL, P
    LECTURE NOTES IN MATHEMATICS, 1988, 1359 : 181 - 190
  • [2] AMENABLE GROUPS AND VARIETIES OF GROUPS
    KELLER, G
    ILLINOIS JOURNAL OF MATHEMATICS, 1972, 16 (02) : 257 - &
  • [3] SUBSEMIGROUPS OF AMENABLE GROUPS
    HOCHSTER, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 21 (02) : 363 - &
  • [4] Amenable hyperbolic groups
    Caprace, Pierre-Emmanuel
    Cornulier, Yves
    Monod, Nicolas
    Tessera, Romain
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (11) : 2903 - 2947
  • [5] Tilings of amenable groups
    Downarowicz, Tomasz
    Huczek, Dawid
    Zhang, Guohua
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 747 : 277 - 298
  • [6] AMENABLE ACTIONS OF GROUPS
    ADAMS, S
    ELLIOTT, GA
    GIORDANO, T
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (02) : 803 - 822
  • [7] CHARACTERIZATIONS OF AMENABLE GROUPS
    EMERSON, WR
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 241 (JUL) : 183 - 194
  • [8] CONTRACTIBLE GROUPS ARE AMENABLE
    MUELLERR.PR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A603 - A603
  • [9] Amenable groups without finitely presented amenable covers
    Benli, Mustafa Goekhan
    Grigorchuk, Rostislav
    de la Harpe, Pierre
    BULLETIN OF MATHEMATICAL SCIENCES, 2013, 3 (01) : 73 - 131
  • [10] Amenable groups that act on the line
    Morris, Dave Witte
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 2509 - 2518