Lattices in amenable groups

被引:9
|
作者
Bader, Uri [1 ]
Caprace, Pierre-Emmanuel [2 ]
Gelander, Tsachik [1 ]
Mozes, Shahar [3 ]
机构
[1] Weizmann Inst Sci, Fac Math & Comp Sci, IL-7610001 Rehovot, Israel
[2] Catholic Univ Louvain, Fac Sci, Ecole Math, B-1348 Louvain La Neuve, Belgium
[3] Hebrew Univ Jerusalem, Einstein Inst Math, IL-9190401 Jerusalem, Israel
基金
欧洲研究理事会;
关键词
lattices; discrete subgroups; amenable groups; SUBGROUPS;
D O I
10.4064/fm572-9-2018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact amenable group. We say that G has property (M) if every closed subgroup of finite covolume in G is cocompact. A classical theorem of Mostow ensures that connected solvable Lie groups have property (M). We prove a non-Archimedean extension of Mostow's theorem by showing that amenable linear locally compact groups have property (M). However property (M) does not hold for all solvable locally compact groups: indeed, we exhibit an example of a metabelian locally compact group with a non-uniform lattice. We show that compactly generated metabelian groups, and more generally nilpotent-by-nilpotent groups, do have property (M). Finally, we highlight a connection of property (M) with the subtle relation between the analytic notions of strong ergodicity and the spectral gap.
引用
收藏
页码:217 / 255
页数:39
相关论文
共 50 条
  • [31] Leptin Densities in Amenable Groups
    Pogorzelski, Felix
    Richard, Christoph
    Strungaru, Nicolae
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)
  • [32] NEW CHARACTERIZATION OF AMENABLE GROUPS
    SHERMAN, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 254 (OCT) : 365 - 389
  • [33] Amenable discrete quantum groups
    Tomatsu, Reiji
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (04) : 949 - 964
  • [34] ON EXTREMELY AMENABLE GROUPS OF HOMEOMORPHISMS
    Uspenskij, Vladimir
    TOPOLOGY PROCEEDINGS, VOL 33, 2009, 33 : 1 - 12
  • [35] Sofic entropy and amenable groups
    Bowen, Lewis
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 427 - 466
  • [36] Rigid actions of amenable groups
    Iddo Samet
    Israel Journal of Mathematics, 2009, 173 : 61 - 90
  • [37] INFORMATIONAL FUTURES OF AMENABLE GROUPS
    PITSKEL, BS
    DOKLADY AKADEMII NAUK SSSR, 1975, 223 (05): : 1067 - 1070
  • [38] Leptin Densities in Amenable Groups
    Felix Pogorzelski
    Christoph Richard
    Nicolae Strungaru
    Journal of Fourier Analysis and Applications, 2022, 28
  • [39] Amenable groups and cellular automata
    Ceccherini-Silberstein, TG
    Machì, A
    Scarabotti, F
    ANNALES DE L INSTITUT FOURIER, 1999, 49 (02) : 673 - +
  • [40] Some extremely amenable groups
    Giordano, T
    Pestov, V
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (04) : 273 - 278