Leptin Densities in Amenable Groups

被引:0
|
作者
Felix Pogorzelski
Christoph Richard
Nicolae Strungaru
机构
[1] Universität Leipzig,Institut für Mathematik
[2] Friedrich-Alexander-Universität Erlangen-Nürnberg,Department für Mathematik
[3] MacEwan University,Department of Mathematical Sciences
[4] Institute of Mathematics “Simon Stoilow”,undefined
来源
Journal of Fourier Analysis and Applications | 2022年 / 28卷
关键词
Amenability; Følner net; Beurling density; Banach density; Model set; Almost periodicity; 43A07; 52C23; 43A60; 78A45;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a positive Borel measure on a locally compact group. We define a notion of uniform density for such a measure, which is based on a group invariant introduced by Leptin in 1966. We then restrict to unimodular amenable groups and to translation bounded measures. In that case our density notion coincides with the well-known Beurling density from Fourier analysis, also known as Banach density from dynamical systems theory. We use Leptin densities for a geometric proof of the model set density formula, which expresses the density of a uniform regular model set in terms of the volume of its window, and for a proof of uniform mean almost periodicity of such model sets.
引用
收藏
相关论文
共 50 条
  • [1] Leptin Densities in Amenable Groups
    Pogorzelski, Felix
    Richard, Christoph
    Strungaru, Nicolae
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)
  • [2] Return times, recurrence densities and entropy for actions of some discrete amenable groups
    Michael Hochman
    Journal d’Analyse Mathématique, 2006, 100 : 1 - 51
  • [3] Return times, recurrence densities and entropy for actions of some discrete amenable groups
    Hochman, Michael
    JOURNAL D ANALYSE MATHEMATIQUE, 2006, 100 (1): : 1 - 51
  • [4] AMENABLE-GROUPS AND AMENABLE GRAPHS
    GERL, P
    LECTURE NOTES IN MATHEMATICS, 1988, 1359 : 181 - 190
  • [5] AMENABLE GROUPS AND VARIETIES OF GROUPS
    KELLER, G
    ILLINOIS JOURNAL OF MATHEMATICS, 1972, 16 (02) : 257 - &
  • [6] Lattices in amenable groups
    Bader, Uri
    Caprace, Pierre-Emmanuel
    Gelander, Tsachik
    Mozes, Shahar
    FUNDAMENTA MATHEMATICAE, 2019, 246 (03) : 217 - 255
  • [7] SUBSEMIGROUPS OF AMENABLE GROUPS
    HOCHSTER, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 21 (02) : 363 - &
  • [8] Amenable hyperbolic groups
    Caprace, Pierre-Emmanuel
    Cornulier, Yves
    Monod, Nicolas
    Tessera, Romain
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (11) : 2903 - 2947
  • [9] Tilings of amenable groups
    Downarowicz, Tomasz
    Huczek, Dawid
    Zhang, Guohua
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 747 : 277 - 298
  • [10] AMENABLE ACTIONS OF GROUPS
    ADAMS, S
    ELLIOTT, GA
    GIORDANO, T
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (02) : 803 - 822