MALDI Efficiency of Metabolites Quantitatively Associated with their Structural Properties: A Quantitative Structure-Property Relationship (QSPR) Approach

被引:14
|
作者
Yukihira, Daichi [1 ]
Miura, Daisuke [2 ]
Fujimura, Yoshinori [2 ]
Umemura, Yoshikatsu [3 ]
Yamaguchi, Shinichi [3 ]
Funatsu, Shinji [3 ]
Yamazaki, Makoto [4 ]
Ohta, Tetsuya [4 ]
Inoue, Hiroaki [4 ]
Shindo, Mitsuru [5 ]
Wariishi, Hiroyuki [2 ,6 ,7 ]
机构
[1] Kyushu Univ, Grad Sch Bioresource & Bioenvironm Sci, Higashi Ku, Fukuoka, Japan
[2] Kyushu Univ, Innovat Ctr Med Redox Nav, Higashi Ku, Fukuoka, Japan
[3] Shimadzu Co Ltd, Analyt & Measuring Instruments Div, Life Sci Business Dept, MS Business Unit,Nakagyo Ku, Kyoto, Japan
[4] Mitsubishi Tanabe Pharma Corp, Div Res, Adv Med Res Labs, Toda, Saitama, Japan
[5] Kyushu Univ, Inst Mat Chem & Engn, Kasuga, Fukuoka 816, Japan
[6] Kyushu Univ, Bioarchitecture Ctr, Higashi Ku, Fukuoka, Japan
[7] Kyushu Univ, Fac Arts & Sci, Nishi Ku, Fukuoka 812, Japan
基金
日本科学技术振兴机构;
关键词
MALDI-MS; Metabolite analysis; QSPR; MASS-SPECTROMETRY; AMINO-ACIDS; MATRIX;
D O I
10.1007/s13361-013-0772-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) experiments require a suitable match of the matrix and target compounds to achieve a selective and sensitive analysis. However, it is still difficult to predict which metabolites are ionizable with a given matrix and which factors lead to an efficient ionization. In the present study, we extracted structural properties of metabolites that contribute to their ionization in MALDI-MS analyses exploiting our experimental data set. The MALDI-MS experiment was performed for 200 standard metabolites using 9-aminoacridine (9-AA) as the matrix. We then developed a prediction model for the ionization profiles (both the ionizability and ionization efficiency) of metabolites using a quantitative structure-property relationship (QSPR) approach. The classification model for the ionizability achieved a 91 % accuracy, and the regression model for the ionization efficiency reached a rank correlation coefficient of 0.77. An analysis of the descriptors contributing to such model construction suggested that the proton affinity is a major determinant of the ionization, whereas some substructures hinder efficient ionization. This study will lead to the development of more rational and predictable MALDI-MS analyses.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] Molecular based models for estimation of critical properties of pure refrigerants: Quantitative structure property relationship (QSPR) approach
    Sobati, Mohammad Amin
    Abooali, Danial
    THERMOCHIMICA ACTA, 2015, 602 : 53 - 62
  • [32] On quantitative structure-property relationship (QSPR) analysis of physicochemical properties and anti-hepatitis prescription drugs using a linear regression model
    Mahboob, Abid
    Rasheed, Muhammad Waheed
    Dhiaa, Aya Mohammed
    Hanif, Iqra
    Amin, Laiba
    HELIYON, 2024, 10 (04)
  • [33] Understanding quantitative structure-property relashionships (QSPR) through chemical stoichiometry.
    Fishtik, W
    Datta, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U308 - U309
  • [34] Studies on Electrochemical Properties of Tetrahydrocarbonthia-tetrathiafulvalenes and Their Three-dimensional Quantitative Structure-property Relationship (3D-QSPR)
    Institute of Analytical Science, Northwest University, Xi'an 710069, China
    Kao Teng Hsueh Hsiao Hua Heush Hsueh Pao/ Chemical Journal of Chinese Universities, 2001, 22 (01):
  • [35] Molecular Modeling of Polymers 16. Gaseous Diffusion in Polymers: A Quantitative Structure-Property Relationship (QSPR) Analysis
    Hitesh C. Patel
    John S. Tokarski
    A. J. Hopfinger
    Pharmaceutical Research, 1997, 14 : 1349 - 1354
  • [36] Modeling the flammability characteristics of polymers using quantitative structure-property relationships (QSPR)
    Parandekar, Priya V.
    Browning, Andrea R.
    Prakash, Om
    POLYMER ENGINEERING AND SCIENCE, 2015, 55 (07): : 1553 - 1559
  • [37] Prediction of density of aromatic explosives by quantitative structure-property relationships (QSPR) method
    Lai, Wei-Peng
    Lian, Peng
    Wang, Bo-Zhou
    Jia, Si-Yuan
    Zhang, Hai-Hao
    Xue, Yong-Qiang
    Pang, Xian-Yong
    Hanneng Cailiao/Chinese Journal of Energetic Materials, 2007, 15 (06): : 626 - 628
  • [38] Insights into sulfur vulcanization from QSPR quantitative structure-property relationships studies
    Ignatz-Hoover, F
    Katritzky, AR
    Lobanov, VS
    Karelson, M
    RUBBER CHEMISTRY AND TECHNOLOGY, 1999, 72 (02): : 318 - 333
  • [39] Studies on electrochemical properties of tetrahydrocarbonthia-tetrathiafulvalenes and their three-dimensional quantitative structure-property relationship (3D-QSPR)
    Li, H
    Tian, M
    Zhang, SC
    Gao, H
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2001, 22 (01): : 95 - 98
  • [40] Quantitative Structure-Property Relationship (QSPR) Prediction of Solvation Gibbs Energy of Bifunctional Compounds by Recursive Neural Networks
    Bernazzani, Luca
    Duce, Celia
    Micheli, Alessio
    Mollica, Vincenzo
    Tine, Maria Rosaria
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2010, 55 (12): : 5425 - 5428