MALDI Efficiency of Metabolites Quantitatively Associated with their Structural Properties: A Quantitative Structure-Property Relationship (QSPR) Approach

被引:14
|
作者
Yukihira, Daichi [1 ]
Miura, Daisuke [2 ]
Fujimura, Yoshinori [2 ]
Umemura, Yoshikatsu [3 ]
Yamaguchi, Shinichi [3 ]
Funatsu, Shinji [3 ]
Yamazaki, Makoto [4 ]
Ohta, Tetsuya [4 ]
Inoue, Hiroaki [4 ]
Shindo, Mitsuru [5 ]
Wariishi, Hiroyuki [2 ,6 ,7 ]
机构
[1] Kyushu Univ, Grad Sch Bioresource & Bioenvironm Sci, Higashi Ku, Fukuoka, Japan
[2] Kyushu Univ, Innovat Ctr Med Redox Nav, Higashi Ku, Fukuoka, Japan
[3] Shimadzu Co Ltd, Analyt & Measuring Instruments Div, Life Sci Business Dept, MS Business Unit,Nakagyo Ku, Kyoto, Japan
[4] Mitsubishi Tanabe Pharma Corp, Div Res, Adv Med Res Labs, Toda, Saitama, Japan
[5] Kyushu Univ, Inst Mat Chem & Engn, Kasuga, Fukuoka 816, Japan
[6] Kyushu Univ, Bioarchitecture Ctr, Higashi Ku, Fukuoka, Japan
[7] Kyushu Univ, Fac Arts & Sci, Nishi Ku, Fukuoka 812, Japan
基金
日本科学技术振兴机构;
关键词
MALDI-MS; Metabolite analysis; QSPR; MASS-SPECTROMETRY; AMINO-ACIDS; MATRIX;
D O I
10.1007/s13361-013-0772-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) experiments require a suitable match of the matrix and target compounds to achieve a selective and sensitive analysis. However, it is still difficult to predict which metabolites are ionizable with a given matrix and which factors lead to an efficient ionization. In the present study, we extracted structural properties of metabolites that contribute to their ionization in MALDI-MS analyses exploiting our experimental data set. The MALDI-MS experiment was performed for 200 standard metabolites using 9-aminoacridine (9-AA) as the matrix. We then developed a prediction model for the ionization profiles (both the ionizability and ionization efficiency) of metabolites using a quantitative structure-property relationship (QSPR) approach. The classification model for the ionizability achieved a 91 % accuracy, and the regression model for the ionization efficiency reached a rank correlation coefficient of 0.77. An analysis of the descriptors contributing to such model construction suggested that the proton affinity is a major determinant of the ionization, whereas some substructures hinder efficient ionization. This study will lead to the development of more rational and predictable MALDI-MS analyses.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] Validation of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) approaches as alternatives to skin sensitization risk assessment
    Lee, Byung-Mu
    Kim, Ji Yun
    Kim, Kyu-Bong
    JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES, 2021, 84 (23): : 945 - 959
  • [22] Quantitative structure-property relationship (QSPR) analysis of calcium aluminosilicate glasses based on molecular dynamics simulations
    Lu, Xiaonan
    Du, Jincheng
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2020, 530
  • [23] Quantitative structure-property relationship (QSPR) correlation of glass transition temperatures of high molecular weight polymers
    Katritzky, AR
    Sild, S
    Lobanov, V
    Karelson, M
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1998, 38 (02): : 300 - 304
  • [24] Quantitative Structure-Property Relationship (QSPR) Modeling of Normal Boiling Point Temperature and Composition of Binary Azeotropes
    Solov'ev, Vitaly P.
    Oprisiu, Ioana
    Marcou, Gilles
    Varnek, Alexandre
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (24) : 14162 - 14167
  • [25] Quantitative structure-property relationship (QSPR) models for predicting the physicochemical properties of polychlorinated biphenyls (PCBs) using deep belief network
    Safder, Usman
    Nam, KiJeon
    Kim, Dongwoo
    Shahlaei, Mohsen
    Yoo, Changkyoo
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2018, 162 : 17 - 28
  • [26] Prediction of viscosity index and pour point in ester lubricants using quantitative structure-property relationship (QSPR)
    Nasab, Shima Ghanavati
    Semnani, Abolfazl
    Marini, Federico
    Biancolillo, Alessandra
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 183 : 59 - 78
  • [27] Predictive quantitative structure-property relationship (QSPR) modeling for adsorption of organic pollutants by carbon nanotubes (CNTs)
    Roy, Joyita
    Ghosh, Sulekha
    Ojha, Probir Kumar
    Roy, Kunal
    ENVIRONMENTAL SCIENCE-NANO, 2019, 6 (01) : 224 - 247
  • [28] Quantitative structure-property relationship (QSPR) models for boiling points, specific gravities, and refraction indices of hydrocarbons
    Ha, ZY
    Ring, Z
    Liu, SJ
    ENERGY & FUELS, 2005, 19 (01) : 152 - 163
  • [29] Quantitative Structure-Property Relationship: XIII. Properties of Aliphatic Alcohols
    I. B. Golovanov
    S. M. Zhenodarova
    O. A. Smolyaninova
    Russian Journal of General Chemistry, 2003, 73 : 519 - 524
  • [30] Quantitative structure-property relationship: XIII. Properties of aliphatic alcohols
    Golovanov, IB
    Zhenodarova, SM
    Smolyaninova, OA
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2003, 73 (04) : 519 - 524