ON SOME HARDY-TYPE INEQUALITIES FOR FRACTIONAL CALCULUS OPERATORS

被引:5
|
作者
Iqbal, Sajid [1 ]
Pecaric, Josip [2 ]
Samraiz, Muhammad [3 ]
Tomovski, Zivorad [4 ,5 ]
机构
[1] Univ Sargodha, Dept Math, Sub Campus Bhakkar, Bhakkar, Pakistan
[2] Univ Zagreb, Fac Text Technol, Prilaz Baruna Filipovica 28A, Zagreb 10000, Croatia
[3] Univ Sargodha, Dept Math, Sargodha, Pakistan
[4] Fac Math & Nat Sci, Gazi Baba BB, Skopje 1000, Macedonia
[5] Univ Rijeka, Dept Math, Radmile Matejc 2, Rijeka 51000, Croatia
来源
关键词
DERIVATIVES; KERNELS;
D O I
10.1215/17358787-0000012X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we present applications of Hardy-type and refined Hardy-type inequalities for a generalized fractional integral operator involving the Mittag-Leffler function in its kernel and for the Hilfer fractional derivative using convex and monotone convex functions.
引用
收藏
页码:438 / 457
页数:20
相关论文
共 50 条
  • [31] Hardy-type inequalities for Dunkl operators with applications to many-particle Hardy inequalities
    Velicu, Andrei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (06)
  • [32] On Hardy-type inequalities
    Edmunds, DE
    Hurri, R
    MATHEMATISCHE NACHRICHTEN, 1998, 194 : 23 - 33
  • [33] Hardy-type inequalities
    Davila, J
    Dupaigne, L
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2004, 6 (03) : 335 - 365
  • [34] ON A NEW CLASS OF HARDY-TYPE INEQUALITIES WITH FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES
    Iqbal, Sajid
    Himmelreich, Kristina Krulic
    Pecaric, Josip
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2014, 18 (519): : 91 - 106
  • [35] GENERAL WEIGHTED HARDY-TYPE INEQUALITIES RELATED TO GREINER OPERATORS
    Yener, Abdullah
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (07) : 2405 - 2430
  • [36] Some Hardy's inequalities on conformable fractional calculus
    AlNemer, Ghada
    Saker, Samir H.
    Ashry, Gehad M.
    Zakarya, Mohammed
    Rezk, Haytham M.
    Kenawy, Mohammed R.
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [37] Some new Hardy-type inequalities on time scales
    El-Deeb, Ahmed A.
    Elsennary, Hamza A.
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [38] SOME DYNAMIC HARDY-TYPE INEQUALITIES WITH GENERAL KERNEL
    Bohner, Martin
    Nosheen, Ammara
    Pecaric, Josip
    Younus, Awais
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01): : 185 - 199
  • [39] FRACTIONAL ORDER HARDY-TYPE INEQUALITY IN FRACTIONAL h-DISCRETE CALCULUS
    Shaimardan, Serikbol
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (02): : 691 - 702
  • [40] Some Fractional Dynamic Inequalities of Hardy's Type via Conformable Calculus
    Saker, Samir
    Kenawy, Mohammed
    AlNemer, Ghada
    Zakarya, Mohammed
    MATHEMATICS, 2020, 8 (03)