Comparison of software for computing the action of the matrix exponential

被引:40
|
作者
Caliari, Marco [1 ]
Kandolf, Peter [2 ]
Ostermann, Alexander [2 ]
Rainer, Stefan [2 ]
机构
[1] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
[2] Univ Innsbruck, Inst Math, A-6020 Innsbruck, Austria
关键词
Leja interpolation; Action of matrix exponential; Krylov subspace method; Taylor series; Exponential integrators;
D O I
10.1007/s10543-013-0446-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The implementation of exponential integrators requires the action of the matrix exponential and related functions of a possibly large matrix. There are various methods in the literature for carrying out this task. In this paper we describe a new implementation of a method based on interpolation at Leja points. We numerically compare this method with other codes from the literature. As we are interested in applications to exponential integrators we choose the test examples from spatial discretization of time dependent partial differential equations in two and three space dimensions. The test matrices thus have large eigenvalues and can be nonnormal.
引用
收藏
页码:113 / 128
页数:16
相关论文
共 50 条
  • [41] NEW SCALING-SQUARING TAYLOR ALGORITHMS FOR COMPUTING THE MATRIX EXPONENTIAL
    Sastre, J.
    Ibanez, J.
    Defez, E.
    Ruiz, P.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : A439 - A455
  • [42] Double-shift-invert Arnoldi method for computing the matrix exponential
    Hashimoto, Yuka
    Nodera, Takashi
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (02) : 727 - 738
  • [43] COMPUTING THE FRECHET DERIVATIVE OF THE MATRIX EXPONENTIAL, WITH AN APPLICATION TO CONDITION NUMBER ESTIMATION
    Al-Mohy, Awad H.
    Higham, Nicholas J.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (04) : 1639 - 1657
  • [44] Double-shift-invert Arnoldi method for computing the matrix exponential
    Yuka Hashimoto
    Takashi Nodera
    Japan Journal of Industrial and Applied Mathematics, 2018, 35 : 727 - 738
  • [45] Software for computing eigenvalue bounds for iterative subspace matrix methods
    Shepard, R
    Minkoff, M
    Zhou, YK
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 170 (01) : 109 - 114
  • [46] Error analysis of the truncated Taylor series expansion method for computing matrix exponential
    Yamamoto, Yusaku
    Kudo, Shuhei
    Hoshi, Takeo
    JSIAM LETTERS, 2022, 14 : 147 - 150
  • [47] Computing the exponential part of a formal fundamental matrix solution of a linear difference system
    Barkatou, MA
    Chen, G
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 1999, 5 (02) : 117 - 142
  • [48] The Matrix Exponential
    Veselic, K.
    DAMPED OSCILLATIONS OF LINEAR SYSTEMS: A MATHEMATICAL INTRODUCTION, 2011, 2023 : 113 - 120
  • [49] EXPONENTIAL OF A MATRIX
    LOSSERS, OP
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (10): : 869 - 869
  • [50] The matrix exponential
    Leonard, IE
    SIAM REVIEW, 1996, 38 (03) : 507 - 512