Comparison of software for computing the action of the matrix exponential

被引:40
|
作者
Caliari, Marco [1 ]
Kandolf, Peter [2 ]
Ostermann, Alexander [2 ]
Rainer, Stefan [2 ]
机构
[1] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
[2] Univ Innsbruck, Inst Math, A-6020 Innsbruck, Austria
关键词
Leja interpolation; Action of matrix exponential; Krylov subspace method; Taylor series; Exponential integrators;
D O I
10.1007/s10543-013-0446-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The implementation of exponential integrators requires the action of the matrix exponential and related functions of a possibly large matrix. There are various methods in the literature for carrying out this task. In this paper we describe a new implementation of a method based on interpolation at Leja points. We numerically compare this method with other codes from the literature. As we are interested in applications to exponential integrators we choose the test examples from spatial discretization of time dependent partial differential equations in two and three space dimensions. The test matrices thus have large eigenvalues and can be nonnormal.
引用
收藏
页码:113 / 128
页数:16
相关论文
共 50 条
  • [31] Explicit formula for computing matrix exponential: An analytical approach
    Bensaoud I.
    Mouline M.
    Rendiconti del Circolo Matematico di Palermo, 2005, 54 (3) : 312 - 318
  • [32] A structure preserving flow for computing Hamiltonian matrix exponential
    Yueh-Cheng Kuo
    Wen-Wei Lin
    Shih-Feng Shieh
    Numerische Mathematik, 2019, 143 : 555 - 582
  • [33] Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation
    Bader, Philipp
    Blanes, Sergio
    Casas, Fernando
    MATHEMATICS, 2019, 7 (12)
  • [34] Expokit: A software package for computing matrix exponentials
    Sidje, RB
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1998, 24 (01): : 130 - 156
  • [35] A LOW-RANK APPROXIMATION FOR COMPUTING THE MATRIX EXPONENTIAL NORM
    Nechepurenko, Yuri M.
    Sadkane, Miloud
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (02) : 349 - 363
  • [36] A Schur-Frechet algorithm for computing the logarithm and exponential of a matrix
    Kenney, CS
    Laub, AJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (03) : 640 - 663
  • [37] The Piecewise Linear Pade Type Method for Computing the Matrix Exponential
    Wu, Beibei
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 351 - 354
  • [38] Computing the Matrix Exponential by Pade type-Lagrange Method
    Wu, Beibei
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 17 - 20
  • [39] Comparison of methods for evaluating functions of a matrix exponential
    Ashi, H. A.
    Cummings, L. J.
    Matthews, P. C.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (3-4) : 468 - 486
  • [40] COMPUTING THE ACTION OF TRIGONOMETRIC AND HYPERBOLIC MATRIX FUNCTIONS
    Higham, Nicholas J.
    Kandolf, Peter
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (02): : A613 - A627