Comparison of software for computing the action of the matrix exponential

被引:40
|
作者
Caliari, Marco [1 ]
Kandolf, Peter [2 ]
Ostermann, Alexander [2 ]
Rainer, Stefan [2 ]
机构
[1] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
[2] Univ Innsbruck, Inst Math, A-6020 Innsbruck, Austria
关键词
Leja interpolation; Action of matrix exponential; Krylov subspace method; Taylor series; Exponential integrators;
D O I
10.1007/s10543-013-0446-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The implementation of exponential integrators requires the action of the matrix exponential and related functions of a possibly large matrix. There are various methods in the literature for carrying out this task. In this paper we describe a new implementation of a method based on interpolation at Leja points. We numerically compare this method with other codes from the literature. As we are interested in applications to exponential integrators we choose the test examples from spatial discretization of time dependent partial differential equations in two and three space dimensions. The test matrices thus have large eigenvalues and can be nonnormal.
引用
收藏
页码:113 / 128
页数:16
相关论文
共 50 条
  • [1] Comparison of software for computing the action of the matrix exponential
    Marco Caliari
    Peter Kandolf
    Alexander Ostermann
    Stefan Rainer
    BIT Numerical Mathematics, 2014, 54 : 113 - 128
  • [2] COMPUTING THE ACTION OF THE MATRIX EXPONENTIAL, WITH AN APPLICATION TO EXPONENTIAL INTEGRATORS
    Al-Mohy, Awad H.
    Higham, Nicholas J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02): : 488 - 511
  • [3] On the stability of some algorithms for computing the action of the matrix exponential
    Fischer, Thomas M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 : 1 - 20
  • [4] Two Taylor Algorithms for Computing the Action of the Matrix Exponential on a Vector
    Ibanez, Javier
    Alonso, Jose M.
    Alonso-Jorda, Pedro
    Defez, Emilio
    Sastre, Jorge
    ALGORITHMS, 2022, 15 (02)
  • [5] A Monte Carlo method for computing the action of a matrix exponential on a vector
    Acebron, Juan A.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
  • [6] Backward error analysis of polynomial approximations for computing the action of the matrix exponential
    Marco Caliari
    Peter Kandolf
    Franco Zivcovich
    BIT Numerical Mathematics, 2018, 58 : 907 - 935
  • [7] Backward error analysis of polynomial approximations for computing the action of the matrix exponential
    Caliari, Marco
    Kandolf, Peter
    Zivcovich, Franco
    BIT NUMERICAL MATHEMATICS, 2018, 58 (04) : 907 - 935
  • [8] Computing the matrix exponential with the double exponential formula
    Tatsuoka, Fuminori
    Sogabe, Tomohiro
    Kemmochi, Tomoya
    Zhang, Shao-Liang
    SPECIAL MATRICES, 2024, 12 (01):
  • [9] Computing humps of the matrix exponential
    Nechepurenko, Yu. M.
    Sadkane, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 87 - 96
  • [10] COMPUTING ENCLOSURES FOR THE MATRIX EXPONENTIAL
    Frommer, Andreas
    Hashemi, Behnam
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (04) : 1674 - 1703