fMRI Visual Image Reconstruction Using Sparse Logistic Regression with a Tunable Regularization Parameter

被引:0
|
作者
Wu, Hao [1 ]
Wang, Jiayi [1 ]
Chen, Badong [1 ]
Zheng, Nanning [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
关键词
fMRI; Visual image reconstruction; Sparse regression; HUMAN BRAIN ACTIVITY; NATURAL IMAGES; CORTEX; ORGANIZATION; RESPONSES;
D O I
10.1007/978-3-319-25159-2_77
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
fMRI has been a popular way for encoding and decoding human visual cortex activity. A previous research reconstructed binary image using a sparse logistic regression (SLR) with fMRI activity patterns as its input. In this article, based on SLR, we propose a new sparse logistic regression with a tunable regularization parameter (SLR-T), which includes the SLR and maximum likelihood regression (MLR) as two special cases. By choosing a proper regularization parameter in SLR-T, it may yield a better performance than both SLR and MLR. An fMRI visual image reconstruction experiment is carried out to verify the performance of SLR-T.
引用
收藏
页码:825 / 830
页数:6
相关论文
共 50 条
  • [31] Super-Resolution Image Reconstruction with Adaptive Regularization Parameter
    Shi Yan-xin
    Cheng Yong-mei
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 39 (09): : 228 - 235
  • [32] Sparse regularization in MRI iterative reconstruction using GPUs
    Zhuo, Yue
    Sutton, Bradley
    Wu, Xiao-Long
    Haldar, Justin
    Hwu, Wen-mei
    Liang, Zhi-pei
    2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7, 2010, : 578 - 582
  • [33] A Novel Sparse Image Reconstruction Based on Iteratively Reweighted Least Squares Using Diagonal Regularization
    Tausicsakul, Bamrung
    Asavaskulkiet, Krissada
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (06) : 1365 - 1371
  • [34] Robust Sparse Logistic Regression With the Lq (0 < q < 1) Regularization for Feature Selection Using Gene Expression Data
    Yang, Ziyi
    Liang, Yong
    Zhang, Hui
    Chai, Hua
    Zhang, Bowen
    Peng, Cheng
    IEEE ACCESS, 2018, 6 : 68586 - 68595
  • [35] Compressed sensing image reconstruction via adaptive sparse nonlocal regularization
    Zha, Zhiyuan
    Liu, Xin
    Zhang, Xinggan
    Chen, Yang
    Tang, Lan
    Bai, Yechao
    Wang, Qiong
    Shang, Zhenhong
    VISUAL COMPUTER, 2018, 34 (01): : 117 - 137
  • [36] Combination of global and nonlocal sparse regularization priors for MR image reconstruction
    Mathew, Raji Susan
    Paul, Joseph Suresh
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 2680 - 2684
  • [37] Compressed sensing image reconstruction via adaptive sparse nonlocal regularization
    Zhiyuan Zha
    Xin Liu
    Xinggan Zhang
    Yang Chen
    Lan Tang
    Yechao Bai
    Qiong Wang
    Zhenhong Shang
    The Visual Computer, 2018, 34 : 117 - 137
  • [38] Learned regularization for image reconstruction in sparse-view photoacoustic tomography
    Wang, Tong
    He, Menghui
    Shen, Kang
    Liu, Wen
    Tian, Chao
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (11): : 5721 - 5737
  • [39] Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization
    Kamilov, Ulugbek S.
    Papadopoulos, Ioannis N.
    Shoreh, Morteza H.
    Goy, Alexandre
    Vonesch, Cedric
    Unser, Michael
    Psaltis, Demetri
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2016, 2 (01) : 59 - 70
  • [40] Iterative Sparse Logistic Regression (iSLR): Anew ensemble pattern classification method for fMRI decoding
    Hirose, Satoshi
    Nambu, Isao
    Naito, Eiichi
    NEUROSCIENCE RESEARCH, 2011, 71 : E97 - E97