fMRI Visual Image Reconstruction Using Sparse Logistic Regression with a Tunable Regularization Parameter

被引:0
|
作者
Wu, Hao [1 ]
Wang, Jiayi [1 ]
Chen, Badong [1 ]
Zheng, Nanning [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
关键词
fMRI; Visual image reconstruction; Sparse regression; HUMAN BRAIN ACTIVITY; NATURAL IMAGES; CORTEX; ORGANIZATION; RESPONSES;
D O I
10.1007/978-3-319-25159-2_77
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
fMRI has been a popular way for encoding and decoding human visual cortex activity. A previous research reconstructed binary image using a sparse logistic regression (SLR) with fMRI activity patterns as its input. In this article, based on SLR, we propose a new sparse logistic regression with a tunable regularization parameter (SLR-T), which includes the SLR and maximum likelihood regression (MLR) as two special cases. By choosing a proper regularization parameter in SLR-T, it may yield a better performance than both SLR and MLR. An fMRI visual image reconstruction experiment is carried out to verify the performance of SLR-T.
引用
收藏
页码:825 / 830
页数:6
相关论文
共 50 条
  • [21] Sparse kernel logistic regression based on L1/2 regularization
    XU Chen
    PENG ZhiMing
    JING WenFeng
    ScienceChina(InformationSciences), 2013, 56 (04) : 75 - 90
  • [22] Comparative study of two Sparse Multinomial Logistic Regression models in decoding visual stimuli from brain activity of fMRI
    Song, Sutao
    Chen, Gongxiang
    Zhan, Yu
    Zhang, Jiacai
    Yao, Li
    MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [23] Image reconstruction in electrical capacitance tomography using multiple linear regression and regularization
    Yan, H
    Liu, LJ
    Xu, H
    Shao, FQ
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2001, 12 (05) : 575 - 581
  • [24] Logistic regression in image reconstruction in electrical impedance tomography
    Kozlowski, Edward
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Cieplak, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2020, 96 (05): : 95 - 98
  • [25] OPTIMIZATION OF REGULARIZATION PARAMETER FOR SPARSE RECONSTRUCTION BASED ON PREDICTIVE RISK ESTIMATE
    Xue, Feng
    Pan, Hanjie
    Liu, Xin
    Liu, Hongyan
    Liu, Jiaqi
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1442 - 1446
  • [26] Classification of Alzheimer's Disease from Structural MRI using Sparse Logistic Regression with Optional Spatial Regularization
    Rao, Anil
    Lee, Ying
    Gass, Achim
    Monsch, Andreas
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 4499 - 4502
  • [27] Sparse image reconstruction using sparse priors
    Ting, Michael
    Raich, Raviv
    Hero, Alfred O., III
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1261 - +
  • [28] Prediction of siRNA Potency Using Sparse Logistic Regression
    Hu, Wei
    Hu, John
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2014, 21 (06) : 420 - 427
  • [29] Super-resolution image reconstruction with adaptive regularization parameter
    Shi, Yan-Xin
    Cheng, Yong-Mei
    Shi, Y.-X. (shiyxx001@sina.com), 1600, CESER Publications, Post Box No. 113, Roorkee, 247667, India (39): : 227 - 235
  • [30] Initial conditions and regularization parameter influence in EIT image reconstruction
    Kriz, Tomas
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 77 - 80