fMRI Visual Image Reconstruction Using Sparse Logistic Regression with a Tunable Regularization Parameter

被引:0
|
作者
Wu, Hao [1 ]
Wang, Jiayi [1 ]
Chen, Badong [1 ]
Zheng, Nanning [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
关键词
fMRI; Visual image reconstruction; Sparse regression; HUMAN BRAIN ACTIVITY; NATURAL IMAGES; CORTEX; ORGANIZATION; RESPONSES;
D O I
10.1007/978-3-319-25159-2_77
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
fMRI has been a popular way for encoding and decoding human visual cortex activity. A previous research reconstructed binary image using a sparse logistic regression (SLR) with fMRI activity patterns as its input. In this article, based on SLR, we propose a new sparse logistic regression with a tunable regularization parameter (SLR-T), which includes the SLR and maximum likelihood regression (MLR) as two special cases. By choosing a proper regularization parameter in SLR-T, it may yield a better performance than both SLR and MLR. An fMRI visual image reconstruction experiment is carried out to verify the performance of SLR-T.
引用
收藏
页码:825 / 830
页数:6
相关论文
共 50 条
  • [1] SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION USING SPARSE LOGISTIC REGRESSION AND SPATIAL-TV REGULARIZATION
    Sun, Le
    Wu, Zenbin
    Liu, Jianjun
    Wei, Zhihui
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1019 - 1022
  • [2] Sparse models for visual image reconstruction from fMRI activity
    Wang, Linyuan
    Tong, Li
    Yan, Bin
    Wang, Lijun
    Zeng, Ying
    Hu, Guoen
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 (06) : 2963 - 2969
  • [3] Visual Tracking Using Logistic Regression and Sparse Representation
    Wang, Heya
    Wang, Fuxiang
    2014 7TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP 2014), 2014, : 66 - 72
  • [4] Sparse Logistic Regression: Comparison of Regularization and Bayesian Implementations
    Zanon, Mattia
    Zambonin, Giuliano
    Susto, Gian Antonio
    McLoone, Sean
    ALGORITHMS, 2020, 13 (06)
  • [5] Nonconvex Sparse Logistic Regression With Weakly Convex Regularization
    Shen, Xinyue
    Gu, Yuantao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (12) : 3199 - 3211
  • [6] Image Annotation by Sparse Logistic Regression
    He, Siqiong
    Jia, Jinzhu
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT II, 2010, 6298 : 22 - +
  • [7] Gene selection in cancer classification using sparse logistic regression with Bayesian regularization
    Cawley, Gavin C.
    Talbot, Nicola L. C.
    BIOINFORMATICS, 2006, 22 (19) : 2348 - 2355
  • [8] IMAGE SEGMENTATION USING SPARSE LOGISTIC REGRESSION WITH SPATIAL PRIOR
    Ruusuvuori, Pekka
    Manninen, Tapio
    Huttunen, Heikki
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 2253 - 2257
  • [9] Regularization Parameter Tuning Optimization Approach in Logistic Regression
    El-Koka, Ahmed
    Era, Kyung-Hwan
    Kang, Dae-Ki
    2013 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2013, : 13 - 18
  • [10] Subspace quadratic regularization method for group sparse multinomial logistic regression
    Wang, Rui
    Xiu, Naihua
    Toh, Kim-Chuan
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 79 (03) : 531 - 559